Abstract
BACKGROUND
Malaria genetic diversity is an important indicator of malaria transmission. Pfmsp1 and pfmsp2 are a frequent molecular epidemiology tool to assess the genetic diversity. This study aims to assess the genetic diversity and the description of multiplicity of infection (MOI) of P. falciparum in Yambio County, South Sudan. Additionally, it assesses the association of specific alleles or multiplicity of infection with antimalarial drugs resistance haplotypes and severity of infection, major challenges in malaria control strategies.
METHODS
There were collected 446 malaria samples from patients in Yambio county. After P. falciparum confirmation, pfmsp1 and pfmsp2 allelic families were genotyped. Frequencies of each alleles were described and multiplicity of infection was calculated. The association between MOI and complicated malaria was assessed using U-Mann Whitney test. The Kruskal-Wallis test was used to compare MOI between collection sites, age groups and antimalarial resistance haplotypes.
RESULTS
For pfmsp1, monomorphic K1 allele infection was predominant (37.0%) in every location and for pfmsp2 locus, monomorphic 3D7 was predominant (44.8%). 71.9% of samples were polyclonal infections (overall MOI = 1.96). The high diversity and polyclonal infections are associated with molecular markers of resistance, and high MOI has been related with a lower risk of severity of infections. There was not find evidence of association between a specific allele and an infection trait.
CONCLUSION
High genetic diversity and high level of polyclonal infections have been found in this study, confirming the general high transmission, and highlighting the need for control measures to be intensified in Yambio county, South Sudan.