Journal Article > ResearchFull Text
Sci Rep. 2023 October 13; Volume 13 (Issue 1); 17363.; DOI:10.1038/s41598-023-44457-0
Acford-Palmer H, Campos M, Bandibabone JB, N’Do S, Bantuzeko C, et al.
Sci Rep. 2023 October 13; Volume 13 (Issue 1); 17363.; DOI:10.1038/s41598-023-44457-0
Vector control strategies have been successful in reducing the number of malaria cases and deaths globally, but the spread of insecticide resistance represents a significant threat to disease control. Insecticide resistance has been reported across Anopheles (An.) vector populations, including species within the An. funestus group. These mosquitoes are responsible for intense malaria transmission across sub-Saharan Africa, including in the Democratic Republic of the Congo (DRC), a country contributing > 12% of global malaria infections and mortality events. To support the continuous efficacy of vector control strategies, it is essential to monitor insecticide resistance using molecular surveillance tools. In this study, we developed an amplicon sequencing (“Amp-seq”) approach targeting An. funestus, and using multiplex PCR, dual index barcoding, and next-generation sequencing for high throughput and low-cost applications. Using our Amp-seq approach, we screened 80 An. funestus field isolates from the DRC across a panel of nine genes with mutations linked to insecticide resistance (ace-1, CYP6P4, CYP6P9a, GSTe2, vgsc, and rdl) and mosquito speciation (cox-1, mtND5, and ITS2). Amongst the 18 non-synonymous mutations detected, was N485I, in the ace-1 gene associated with carbamate resistance. Overall, our panel represents an extendable and much-needed method for the molecular surveillance of insecticide resistance in An. funestus populations.
Journal Article > Short ReportFull Text
MMWR Morb Mortal Wkly Rep. 2007 February 2; Volume 56 (Issue 4); 73-76.
Nguku PM, Sharif S, Omar A, Nzioka C, Muthoka P, et al.
MMWR Morb Mortal Wkly Rep. 2007 February 2; Volume 56 (Issue 4); 73-76.
In mid-December 2006, several unexplained fatalities associated with fever and generalized bleeding were reported to the Kenya Ministry of Health (KMOH) from Garissa District in North Eastern Province (NEP). By December 20, a total of 11 deaths had been reported. Of serum samples collected from the first 19 patients, Rift Valley fever (RVF) virus RNA or immunoglobulin M (IgM) antibodies against RVF virus were found in samples from 10 patients; all serum specimens were negative for yellow fever, Ebola, Crimean-Congo hemorrhagic fever, and dengue viruses. The outbreak was confirmed by isolation of RVF virus from six of the specimens. Humans can be infected with RVF virus from bites of mosquitoes or other arthropod vectors that have fed on animals infected with RVF virus, or through contact with viremic animals, particularly livestock. Reports of livestock deaths and unexplained animal abortions in NEP provided further evidence of an RVF outbreak. On December 20, an investigation was launched by KMOH, the Kenya Field Epidemiology and Laboratory Training Program (FELTP), the Kenya Medical Research Institute (KEMRI), the Walter Reed Project of the U.S. Army Medical Research Unit, CDC-Kenya's Global Disease Detection Center, and other partners, including the World Health Organization (WHO) and Médecins Sans Frontières (MSF). This report describes the findings from that initial investigation and the control measures taken in response to the RVF outbreak, which spread to multiple additional provinces and districts, resulting in 404 cases with 118 deaths as of January 25, 2007.
Conference Material > Poster
Ndayisaba R, Colombe S, Van Bortel W, Sinarinzi P, Nzomukunda Y, et al.
MSF Scientific Day International 2024. 2024 May 16; DOI:10.57740/ultcgK
Journal Article > ProtocolFull Text
BMJ Open. 2023 October 28; Volume 13 (Issue 10); e074679.; DOI:10.1136/bmjopen-2023-074679
Kumar R, Dahal P, Singh-Phulgenda S, Siddiqui NA, Munir A, et al.
BMJ Open. 2023 October 28; Volume 13 (Issue 10); e074679.; DOI:10.1136/bmjopen-2023-074679
INTRODUCTION
Visceral leishmaniasis (VL) is a parasitic disease with an estimated 30 000 new cases occurring annually. There is an observed variation in the efficacy of the current first-line therapies across different regions. Such heterogeneity could be a function of host, parasite and drug factors. An individual participant data meta-analysis (IPD-MA) is planned to explore the determinants of treatment outcomes.
METHODS AND ANALYSIS
The Infectious Diseases Data Observatory (IDDO) VL living systematic review (IDDO VL LSR) library is an open-access resource of all published therapeutic studies in VL since 1980. For this current review, the search includes all clinical trials published between 1 January 1980 and 2 May 2021. Studies indexed in the IDDO VL LSR library were screened for eligibility for inclusion in this IPD-MA. Corresponding authors and principal investigators of the studies meeting the eligibility criteria for inclusion were invited to be part of the collaborative IPD-MA. Authors agreeing to participate in this collaborative research were requested to share the IPD using the IDDO VL data platform. The IDDO VL data platform currently holds data sets from clinical trials standardised to a common data format and provides a unique opportunity to identify host, parasite and drug determinants of treatment outcomes. Multivariable regression models will be constructed to identify determinants of therapeutic outcomes using generalised linear mixed-effects models accounting for within-study site clustering.
ETHICS AND DISSEMINATION
This IPD-MA meets the criteria for waiver of ethical review as defined by the Oxford Tropical Research Ethics Committee (OxTREC) granted to IDDO, as the research consists of secondary analysis of existing anonymised data (Exempt granted on 29 March 2023, OxTREC REF: IDDO) Ethics approval was granted by the ICMR-Rajendra Memorial Research Institute of Medical Sciences ethics committee (Letter no: RMRI/EC/30/2022) on 04-07-2022. The results of this IPD-MA will be disseminated at conferences, IDDO website and any peer-reviewed publications. All publications will be open source. Findings of this research will be critically important for the control programmes at regional/global levels, policy makers and groups developing new VL treatments.
Visceral leishmaniasis (VL) is a parasitic disease with an estimated 30 000 new cases occurring annually. There is an observed variation in the efficacy of the current first-line therapies across different regions. Such heterogeneity could be a function of host, parasite and drug factors. An individual participant data meta-analysis (IPD-MA) is planned to explore the determinants of treatment outcomes.
METHODS AND ANALYSIS
The Infectious Diseases Data Observatory (IDDO) VL living systematic review (IDDO VL LSR) library is an open-access resource of all published therapeutic studies in VL since 1980. For this current review, the search includes all clinical trials published between 1 January 1980 and 2 May 2021. Studies indexed in the IDDO VL LSR library were screened for eligibility for inclusion in this IPD-MA. Corresponding authors and principal investigators of the studies meeting the eligibility criteria for inclusion were invited to be part of the collaborative IPD-MA. Authors agreeing to participate in this collaborative research were requested to share the IPD using the IDDO VL data platform. The IDDO VL data platform currently holds data sets from clinical trials standardised to a common data format and provides a unique opportunity to identify host, parasite and drug determinants of treatment outcomes. Multivariable regression models will be constructed to identify determinants of therapeutic outcomes using generalised linear mixed-effects models accounting for within-study site clustering.
ETHICS AND DISSEMINATION
This IPD-MA meets the criteria for waiver of ethical review as defined by the Oxford Tropical Research Ethics Committee (OxTREC) granted to IDDO, as the research consists of secondary analysis of existing anonymised data (Exempt granted on 29 March 2023, OxTREC REF: IDDO) Ethics approval was granted by the ICMR-Rajendra Memorial Research Institute of Medical Sciences ethics committee (Letter no: RMRI/EC/30/2022) on 04-07-2022. The results of this IPD-MA will be disseminated at conferences, IDDO website and any peer-reviewed publications. All publications will be open source. Findings of this research will be critically important for the control programmes at regional/global levels, policy makers and groups developing new VL treatments.