Abstract
Hepatitis E Virus (HEV) genotype 1 and 2 infect an estimated 20 million people each year, via the faecal-oral transmission route. An urban outbreak of HEV occurred in Am Timan, Chad, between September 2016 and April 2017. As part of the outbreak response, Médecins Sans Frontières and the Ministry of Health implemented water and hygiene interventions, including the chlorination of town water sources. We aimed to understand whether these water treatment activities had any impact on the number of HEV infections, using geospatial analysis of epidemiological and water treatment monitoring data. By conducting cluster analysis we investigated whether there were areas of particularly high and low infection risk during the outbreak and explored the reasons for this. We observed two high-risk spatial clusters of suspected cases and one high-risk cluster of confirmed cases. Our main finding was that confirmed HEV cases had a higher median number of days of exposure to unsafe water compared to suspected and non-confirmed cases (Kruskal-Wallis Chi Square: 15.5; p < 0.001). Our study confirms the mixed, but shifting, transmission routes during this outbreak. It also highlights the spatial and temporal analytical methods, which can be employed in future outbreaks to improve understanding of HEV transmission.