Journal Article > ResearchFull Text
PLoS Negl Trop Dis. 2013 August 15; Volume 7 (Issue 8); DOI:10.1371/journal.pntd.0002366
Martinez-Pino I, Luquero FJ, Sakoba K, Sylla S, Haile M, et al.
PLoS Negl Trop Dis. 2013 August 15; Volume 7 (Issue 8); DOI:10.1371/journal.pntd.0002366
During the 2012 cholera outbreak in the Republic of Guinea, the Ministry of Health, supported by Médecins Sans Frontières - Operational Center Geneva, used the oral cholera vaccine Shanchol as a part of the emergency response. The rapid diagnostic test (RDT) Crystal VC, widely used during outbreaks, detects lipopolysaccharide antigens of Vibrio cholerae O1 and O139, both included in Shanchol. In the context of reactive use of a whole-cell cholera vaccine in a region where cholera cases have been reported, it is essential to know what proportion of vaccinated individuals would be reactive to the RDT and for how long after vaccination.
Journal Article > Short ReportFull Text
Morbidity and Mortality Weekly Report. 2015 May 22
Browne L, Menkir Z, Kahi V, Maina G, Asnakew S, et al.
Morbidity and Mortality Weekly Report. 2015 May 22
In early April 2014, two South Sudanese refugees in the Gambella region of western Ethiopia experienced acute onset of jaundice, accompanied by fever. One patient was a pregnant woman aged 24 years evaluated at a routine prenatal clinic visit in Leitchour refugee camp. The second patient was a malnourished boy aged 1 year who resided in Tierkidi refugee camp. The boy died despite hospitalization. During the last 2 weeks of May, four more cases of acute jaundice syndrome (AJS), defined as yellow discoloration of the eyes, were detected in Leitchuor. By mid-June, an additional 50 AJS cases were reported across three large camps in the region, Kule, Leitchuor, and Tierkidi, with 45 (90%) of these cases reported in Leitchuor. Sera collected from a convenience sample of 21 AJS cases were sent to Addis Ababa and Nairobi for real-time polymerase chain reaction testing; 12 (57%) were positive for hepatitis E virus (HEV) RNA. By January 2015, a total of 1,117 suspected cases of hepatitis E meeting the case definition of AJS were reported among refugees in camps across Gambella.
Journal Article > ResearchAbstract
Trans R Soc Trop Med Hyg. 2010 November 13; Volume 105 (Issue 1); DOI:10.1016/j.trstmh.2010.10.001
Luque Fernandez MA, Mason PR, Gray H, Bauernfeind A, Maes P
Trans R Soc Trop Med Hyg. 2010 November 13; Volume 105 (Issue 1); DOI:10.1016/j.trstmh.2010.10.001
This ecological study describes the cholera epidemic in Harare during 2008-2009 and identifies patterns that may explain transmission. Rates ratios of cholera cases by suburb were calculated by a univariate regression Poisson model and then, through an Empirical Bayes modelling, smoothed rate ratios were estimated and represented geographically. Mbare and southwest suburbs of Harare presented higher rate ratios. Suburbs attack rates ranged from 1.2 (95% Cl = 0.7-1.6) cases per 1000 people in Tynwald to 90.3 (95% Cl = 82.8-98.2) in Hopley. The identification of this spatial pattern in the spread, characterised by low risk in low density residential housing, and a higher risk in high density south west suburbs and Mbare, could be used to advocate for improving water and sanitation conditions and specific preparedness measures in the most affected areas.
Journal Article > ResearchFull Text
PLOS One. 2010 June 11; Volume 5 (Issue 6); DOI:10.1371/journal.pone.0011086
Rose AMC, Mueller JE, Gerstl S, Njanpop-Lafourcade BM, Page AL, et al.
PLOS One. 2010 June 11; Volume 5 (Issue 6); DOI:10.1371/journal.pone.0011086
Meningococcal meningitis outbreaks occur every year during the dry season in the "meningitis belt" of sub-Saharan Africa. Identification of the causative strain is crucial before launching mass vaccination campaigns, to assure use of the correct vaccine. Rapid agglutination (latex) tests are most commonly available in district-level laboratories at the beginning of the epidemic season; limitations include a short shelf-life and the need for refrigeration and good technical skills. Recently, a new dipstick rapid diagnostic test (RDT) was developed to identify and differentiate disease caused by meningococcal serogroups A, W135, C and Y. We evaluated the diagnostic performance of this dipstick RDT during an urban outbreak of meningitis caused by N. meningitidis serogroup A in Ouagadougou, Burkina Faso; first against an in-country reference standard of culture and/or multiplex PCR; and second against culture and/or a highly sensitive nested PCR technique performed in Oslo, Norway. We included 267 patients with suspected acute bacterial meningitis. Using the in-country reference standard, 50 samples (19%) were positive. Dipstick RDT sensitivity (N = 265) was 70% (95%CI 55-82) and specificity 97% (95%CI 93-99). Using culture and/or nested PCR, 126/259 (49%) samples were positive; dipstick RDT sensitivity (N = 257) was 32% (95%CI 24-41), and specificity was 99% (95%CI 95-100). We found dipstick RDT sensitivity lower than values reported from (i) assessments under ideal laboratory conditions (>90%), and (ii) a prior field evaluation in Niger [89% (95%CI 80-95)]. Specificity, however, was similar to (i), and higher than (ii) [62% (95%CI 48-75)]. At this stage in development, therefore, other tests (e.g., latex) might be preferred for use in peripheral health centres. We highlight the value of field evaluations for new diagnostic tests, and note relatively low sensitivity of a reference standard using multiplex vs. nested PCR. Although the former is the current standard for bacterial meningitis surveillance in the meningitis belt, nested PCR performed in a certified laboratory should be used as an absolute reference when evaluating new diagnostic tests.
Journal Article > ResearchFull Text
Epidemiol Infect. 2013 October 11; Volume 142 (Issue 8); DOI:10.1017/S0950268813002562
Grandesso F, Allan M, Jean-Simon PSJ, Boncy J, Blake A, et al.
Epidemiol Infect. 2013 October 11; Volume 142 (Issue 8); DOI:10.1017/S0950268813002562
SUMMARY Two community-based density case-control studies were performed to assess risk factors for cholera transmission during inter-peak periods of the ongoing epidemic in two Haitian urban settings, Gonaives and Carrefour. The strongest associations were: close contact with cholera patients (sharing latrines, visiting cholera patients, helping someone with diarrhoea), eating food from street vendors and washing dishes with untreated water. Protective factors were: drinking chlorinated water, receiving prevention messages via television, church or training sessions, and high household socioeconomic level. These findings suggest that, in addition to contaminated water, factors related to direct and indirect inter-human contact play an important role in cholera transmission during inter-peak periods. In order to reduce cholera transmission in Haiti intensive preventive measures such as hygiene promotion and awareness campaigns should be implemented during inter-peak lulls, when prevention activities are typically scaled back.
Journal Article > ResearchFull Text
PLOS One. 2014 December 8; Volume 9 (Issue 12); DOI:10.1371/journal.pone.0114702
Polonsky JA, Martinez-Pino I, Nackers F, Chonzi P, Manangazira P, et al.
PLOS One. 2014 December 8; Volume 9 (Issue 12); DOI:10.1371/journal.pone.0114702
Typhoid fever remains a significant public health problem in developing countries. In October 2011, a typhoid fever epidemic was declared in Harare, Zimbabwe - the fourth enteric infection epidemic since 2008. To orient control activities, we described the epidemiology and spatiotemporal clustering of the epidemic in Dzivaresekwa and Kuwadzana, the two most affected suburbs of Harare.
Journal Article > ResearchFull Text
Vaccine. 2022 June 9; Volume S0264-410X (Issue 22); 00552-7.; DOI:10.1016/j.vaccine.2022.04.093
Lightowler M, Manangazira P, Nackers F, Van Herp M, Phiri I, et al.
Vaccine. 2022 June 9; Volume S0264-410X (Issue 22); 00552-7.; DOI:10.1016/j.vaccine.2022.04.093
BACKGROUND
Zimbabwe suffers from regular outbreaks of typhoid fever (TF), worse since 2017. Most cases were in Harare and a vaccination campaign with Typhoid Conjugate Vaccine (TCV) was conducted in March 2019. The vaccine effectiveness (VE) was assessed against culture-confirmed S. Typhi in children six months to 15 years and in individuals six months to 45 years in Harare.
METHODS
A matched case-control study was conducted in three urban suburbs of Harare targeted by the TCV vaccination campaign. Suspected TF cases were enrolled prospectively in four health facilities and were matched to facility (1:1) and community (1:5) controls.
FINDINGS
Of 504 suspected cases from July 2019 to March 2020, 148 laboratory-confirmed TF cases and 153 controls confirmed-negative were identified. One hundred and five (47 aged six months to 15 years) cases were age, sex, and residence matched with 105 facility-based controls while 96 cases were matched 1:5 by age, sex, and immediate-neighbour with 229 community controls.
The adjusted VE against confirmed TF was 75% (95%CI: 1–94, p = 0.049) compared to facility controls, and 84% (95%CI: 57–94, p < 0.001) compared to community controls in individuals six months to 15 years. The adjusted VE against confirmed TF was 46% (95%CI: 26–77, p = 0.153) compared to facility controls, and 67% (95%CI: 35–83, p = 0.002) compared to community controls six months to 45 years old.
INTERPRETATION
This study confirms that one vaccine dose of TCV is effective to control TF in children between six months and 15 years old in an African setting.
Zimbabwe suffers from regular outbreaks of typhoid fever (TF), worse since 2017. Most cases were in Harare and a vaccination campaign with Typhoid Conjugate Vaccine (TCV) was conducted in March 2019. The vaccine effectiveness (VE) was assessed against culture-confirmed S. Typhi in children six months to 15 years and in individuals six months to 45 years in Harare.
METHODS
A matched case-control study was conducted in three urban suburbs of Harare targeted by the TCV vaccination campaign. Suspected TF cases were enrolled prospectively in four health facilities and were matched to facility (1:1) and community (1:5) controls.
FINDINGS
Of 504 suspected cases from July 2019 to March 2020, 148 laboratory-confirmed TF cases and 153 controls confirmed-negative were identified. One hundred and five (47 aged six months to 15 years) cases were age, sex, and residence matched with 105 facility-based controls while 96 cases were matched 1:5 by age, sex, and immediate-neighbour with 229 community controls.
The adjusted VE against confirmed TF was 75% (95%CI: 1–94, p = 0.049) compared to facility controls, and 84% (95%CI: 57–94, p < 0.001) compared to community controls in individuals six months to 15 years. The adjusted VE against confirmed TF was 46% (95%CI: 26–77, p = 0.153) compared to facility controls, and 67% (95%CI: 35–83, p = 0.002) compared to community controls six months to 45 years old.
INTERPRETATION
This study confirms that one vaccine dose of TCV is effective to control TF in children between six months and 15 years old in an African setting.
Journal Article > ResearchFull Text
Int J Infect Dis. 2022 September 1; Volume 122; 215-221.; DOI:10.1016/j.ijid.2022.05.039
Zheng Q, Luquero FJ, Ciglenecki I, Wamala JF, Abubakar A, et al.
Int J Infect Dis. 2022 September 1; Volume 122; 215-221.; DOI:10.1016/j.ijid.2022.05.039
BACKGROUND
Cholera remains a public health threat but is inequitably distributed across sub-Saharan Africa. Lack of standardized reporting and inconsistent outbreak definitions limit our understanding of cholera outbreak epidemiology.
METHODS
From a database of cholera incidence and mortality, we extracted data from sub-Saharan Africa and reconstructed outbreaks of suspected cholera starting in January 2010 to December 2019 based on location-specific average weekly incidence rate thresholds. We then described the distribution of key outbreak metrics.
RESULTS
We identified 999 suspected cholera outbreaks in 744 regions across 25 sub-Saharan African countries. The outbreak periods accounted for 1.8 billion person-months (2% of the total during this period) from January 2010 to January 2020. Among 692 outbreaks reported from second-level administrative units (e.g., districts), the median attack rate was 0.8 per 1000 people (interquartile range (IQR), 0.3-2.4 per 1000), the median epidemic duration was 13 weeks (IQR, 8-19), and the median early outbreak reproductive number was 1.8 (range, 1.1-3.5). Larger attack rates were associated with longer times to outbreak peak, longer epidemic durations, and lower case fatality risks.
CONCLUSIONS
This study provides a baseline from which the progress toward cholera control and essential statistics to inform outbreak management in sub-Saharan Africa can be monitored.
Cholera remains a public health threat but is inequitably distributed across sub-Saharan Africa. Lack of standardized reporting and inconsistent outbreak definitions limit our understanding of cholera outbreak epidemiology.
METHODS
From a database of cholera incidence and mortality, we extracted data from sub-Saharan Africa and reconstructed outbreaks of suspected cholera starting in January 2010 to December 2019 based on location-specific average weekly incidence rate thresholds. We then described the distribution of key outbreak metrics.
RESULTS
We identified 999 suspected cholera outbreaks in 744 regions across 25 sub-Saharan African countries. The outbreak periods accounted for 1.8 billion person-months (2% of the total during this period) from January 2010 to January 2020. Among 692 outbreaks reported from second-level administrative units (e.g., districts), the median attack rate was 0.8 per 1000 people (interquartile range (IQR), 0.3-2.4 per 1000), the median epidemic duration was 13 weeks (IQR, 8-19), and the median early outbreak reproductive number was 1.8 (range, 1.1-3.5). Larger attack rates were associated with longer times to outbreak peak, longer epidemic durations, and lower case fatality risks.
CONCLUSIONS
This study provides a baseline from which the progress toward cholera control and essential statistics to inform outbreak management in sub-Saharan Africa can be monitored.
Other > Pre-Print
bioRxiv. 2017 August 18; DOI:10.1101/177451
Funk S, Camacho A, Kucharski AJ, Lowe R, Eggo RM, et al.
bioRxiv. 2017 August 18; DOI:10.1101/177451
Real-time forecasts based on mathematical models can inform critical decision-making during infectious disease outbreaks. Yet, epidemic forecasts are rarely evaluated during or after the event, and there is little guidance on the best metrics for assessment. Here, we propose an evaluation approach that disentangles different components of forecasting ability using metrics that separately assess the calibration, sharpness and unbiasedness of forecasts. This makes it possible to assess not just how close a forecast was to reality but also how well uncertainty has been quantified. We used this approach to analyse the performance of weekly forecasts we generated in real time in Western Area, Sierra Leone, during the 2013–16 Ebola epidemic in West Africa. We investigated a range of forecast model variants based on the model fits generated at the time with a semi-mechanistic model, and found that good probabilistic calibration was achievable at short time horizons of one or two weeks ahead but models were increasingly inaccurate at longer forecasting horizons. This suggests that forecasts may have been of good enough quality to inform decision making requiring predictions a few weeks ahead of time but not longer, reflecting the high level of uncertainty in the processes driving the trajectory of the epidemic. Comparing forecasts based on the semi-mechanistic model to simpler null models showed that the best semi-mechanistic model variant performed better than the null models with respect to probabilistic calibration, and that this would have been identified from the earliest stages of the outbreak. As forecasts become a routine part of the toolkit in public health, standards for evaluation of performance will be important for assessing quality and improving credibility of mathematical models, and for elucidating difficulties and trade-offs when aiming to make the most useful and reliable forecasts.
Journal Article > Short ReportFull Text
Morbidity and Mortality Weekly Report. 2014 November 14; Volume 63; 1067-71.
Sharma A, Heijenberg N, Peter C, Bolongei J, Reeder B, et al.
Morbidity and Mortality Weekly Report. 2014 November 14; Volume 63; 1067-71.
WHAT IS ALREADY KNOWN ABOUT THIS TOPIC?
Lofa County in Liberia has one of the highest numbers of reported cases of Ebola virus disease (Ebola) in West Africa. Government health offices, nongovernmental organizations, and technical agencies coordinated response activities to reduce transmission of Ebola in Lofa County. The intensity and thoroughness of activities increased in response to the resurgence of Ebola in early June.
WHAT IS ADDED BY THIS REPORT?
Trends in new reported cases, admissions to the dedicated Ebola treatment unit in the town of Foya, and test results of community decedents evaluated for Ebola virus suggest transmission of Ebola virus decreased in Lofa County as early as August 17, 2014, following rapid scale-up of response activities after a resurgence of Ebola in early June.
WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE?
A comprehensive Ebola response strategy developed with participation from the local community and rapidly scaled up following resurgence of Ebola might have reduced the spread of Ebola virus in Lofa County. The strategy implemented in Lofa County might serve as a model for reducing transmission of Ebola virus in other affected areas.
Lofa County in Liberia has one of the highest numbers of reported cases of Ebola virus disease (Ebola) in West Africa. Government health offices, nongovernmental organizations, and technical agencies coordinated response activities to reduce transmission of Ebola in Lofa County. The intensity and thoroughness of activities increased in response to the resurgence of Ebola in early June.
WHAT IS ADDED BY THIS REPORT?
Trends in new reported cases, admissions to the dedicated Ebola treatment unit in the town of Foya, and test results of community decedents evaluated for Ebola virus suggest transmission of Ebola virus decreased in Lofa County as early as August 17, 2014, following rapid scale-up of response activities after a resurgence of Ebola in early June.
WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE?
A comprehensive Ebola response strategy developed with participation from the local community and rapidly scaled up following resurgence of Ebola might have reduced the spread of Ebola virus in Lofa County. The strategy implemented in Lofa County might serve as a model for reducing transmission of Ebola virus in other affected areas.