Journal Article > ResearchFull Text
Nat Commun. 2024 May 9; Volume 15 (Issue 1); 3927.; DOI:10.1038/s41467-024-48077-8
Kho S, Seung KJ, Huerga H, Bastard M, Khan PY, et al.
Nat Commun. 2024 May 9; Volume 15 (Issue 1); 3927.; DOI:10.1038/s41467-024-48077-8
Sputum culture reversion after conversion is an indicator of tuberculosis (TB) treatment failure. We analyze data from the endTB multi-country prospective observational cohort (NCT03259269) to estimate the frequency (primary endpoint) among individuals receiving a longer (18-to-20 month) regimen for multidrug- or rifampicin-resistant (MDR/RR) TB who experienced culture conversion. We also conduct Cox proportional hazard regression analyses to identify factors associated with reversion, including comorbidities, previous treatment, cavitary disease at conversion, low body mass index (BMI) at conversion, time to conversion, and number of likely-effective drugs. Of 1,286 patients, 54 (4.2%) experienced reversion, a median of 173 days (97-306) after conversion. Cavitary disease, BMI < 18.5, hepatitis C, prior treatment with second-line drugs, and longer time to initial culture conversion were positively associated with reversion. Reversion was uncommon. Those with cavitary disease, low BMI, hepatitis C, prior treatment with second-line drugs, and in whom culture conversion is delayed may benefit from close monitoring following conversion.
Journal Article > ResearchFull Text
Clin Infect Dis. 2024 January 25; Volume 78 (Issue 1); 164-171.; DOI:10.1093/cid/ciad589
Sauer SM, Mitnick CD, Khan UT, Hewison CCH, Bastard M, et al.
Clin Infect Dis. 2024 January 25; Volume 78 (Issue 1); 164-171.; DOI:10.1093/cid/ciad589
BACKGROUND
Quantification of recurrence risk following successful treatment is crucial to evaluating regimens for multidrug- or rifampicin-resistant (MDR/RR) tuberculosis (TB). However, such analyses are complicated when some patients die or become lost during post-treatment-follow-up.
METHODS
We analyzed data on 1,991 patients who successfully completed a longer MDR/RR-TB regimen containing bedaquiline and/or delamanid between 2015 and 2018 in 16 countries. Using five approaches for handling post-treatment deaths, we estimated the six-month post-treatment TB recurrence risk overall, and by HIV status. We used inverse-probability-weighting to account for patients with missing follow-up and investigated the impact of potential bias from excluding these patients without applying inverse-probability weights.
RESULTS
The estimated TB recurrence risk was 7.4 per 1000 (95% confidence interval (CI): 3.5,12.9) when deaths were handled as non-recurrences, and 7.6 per 1000 (95% CI: 3.6,13.1) when deaths were censored and inverse-probability weights were applied to account for the excluded deaths. The estimated risk of composite recurrence outcomes were 25.5 (95% CI: 15.4,38.1), 11.7 (95% CI: 6.5,18.3), and 8.6 (95% CI: 4.2,14.6) per 1000 for recurrence or 1) any death, 2) death with unknown or TB-related cause, 3) TB-related death, respectively. Corresponding relative risks for HIV status varied in direction and magnitude. Exclusion of patients with missing follow-up without inverse-probability-weighting had a small impact on estimates.
CONCLUSIONS
The estimated six-month TB recurrence risk was low, and the association with HIV status was inconclusive due to few recurrence events. Estimation of post-treatment recurrence will be enhanced by explicit assumptions about deaths and appropriate adjustment for missing follow-up data.
Quantification of recurrence risk following successful treatment is crucial to evaluating regimens for multidrug- or rifampicin-resistant (MDR/RR) tuberculosis (TB). However, such analyses are complicated when some patients die or become lost during post-treatment-follow-up.
METHODS
We analyzed data on 1,991 patients who successfully completed a longer MDR/RR-TB regimen containing bedaquiline and/or delamanid between 2015 and 2018 in 16 countries. Using five approaches for handling post-treatment deaths, we estimated the six-month post-treatment TB recurrence risk overall, and by HIV status. We used inverse-probability-weighting to account for patients with missing follow-up and investigated the impact of potential bias from excluding these patients without applying inverse-probability weights.
RESULTS
The estimated TB recurrence risk was 7.4 per 1000 (95% confidence interval (CI): 3.5,12.9) when deaths were handled as non-recurrences, and 7.6 per 1000 (95% CI: 3.6,13.1) when deaths were censored and inverse-probability weights were applied to account for the excluded deaths. The estimated risk of composite recurrence outcomes were 25.5 (95% CI: 15.4,38.1), 11.7 (95% CI: 6.5,18.3), and 8.6 (95% CI: 4.2,14.6) per 1000 for recurrence or 1) any death, 2) death with unknown or TB-related cause, 3) TB-related death, respectively. Corresponding relative risks for HIV status varied in direction and magnitude. Exclusion of patients with missing follow-up without inverse-probability-weighting had a small impact on estimates.
CONCLUSIONS
The estimated six-month TB recurrence risk was low, and the association with HIV status was inconclusive due to few recurrence events. Estimation of post-treatment recurrence will be enhanced by explicit assumptions about deaths and appropriate adjustment for missing follow-up data.
Journal Article > CommentaryFull Text
Int J Tuberc Lung Dis. 2020 October 1; Volume 24 (Issue 10); 1081-1086.; DOI:10.5588/ijtld.20.0141
Seung KJ, Khan UT, Varaine FFV, Ahmed SM, Bastard M, et al.
Int J Tuberc Lung Dis. 2020 October 1; Volume 24 (Issue 10); 1081-1086.; DOI:10.5588/ijtld.20.0141
In 2015, the initiative Expand New Drug Markets for TB (endTB) began, with the objective of reducing barriers to access to the new and repurposed TB drugs. Here we describe the major implementation challenges encountered in 17 endTB countries. We provide insights on how national TB programmes and other stakeholders can scale-up the programmatic use of new and repurposed TB drugs, while building scientific evidence about their safety and efficacy. For any new drug or diagnostic, multiple market barriers can slow the pace of scale-up. During 2015–2019, endTB was successful in increasing the number of patients receiving new and repurposed TB drugs in 17 countries. The endTB experience has many lessons, which are relevant to country level introduction of new TB drugs, as well as non-TB drugs and diagnostics. For example: the importation of TB drugs is possible even in the absence of registration; emphasis on good clinical monitoring is more important than pharmacovigilance reporting; national guidelines and expert committees can both facilitate and hinder innovative practice; clinicians use new and repurposed TB drugs when they are available; data collection to generate scientific evidence requires financial and human resources; pilot projects can drive national scale-up.
Journal Article > Meta-AnalysisFull Text
Lancet. 2020 August 8; Volume 396 (Issue 10248); 402-411.; DOI:10.1016/S0140-6736(20)31316-7
Bisson GP, Bastos ML, Campbell JR, Bang D, Brust JCM, et al.
Lancet. 2020 August 8; Volume 396 (Issue 10248); 402-411.; DOI:10.1016/S0140-6736(20)31316-7
BACKGROUND
HIV-infection is associated with increased mortality during multidrug-resistant tuberculosis treatment, but the extent to which the use of antiretroviral therapy (ART) and anti-tuberculosis medications modify this risk are unclear. Our objective was to evaluate how use of these treatments altered mortality risk in HIV-positive adults with multidrug-resistant tuberculosis.
METHODS
We did an individual patient data meta-analysis of adults 18 years or older with confirmed or presumed multidrug-resistant tuberculosis initiating tuberculosis treatment between 1993 and 2016. Data included ART use and anti-tuberculosis medications grouped according to WHO effectiveness categories. The primary analysis compared HIV-positive with HIV-negative patients in terms of death during multidrug-resistant tuberculosis treatment, excluding those lost to follow up, and was stratified by ART use. Analyses used logistic regression after exact matching on country World Bank income classification and drug resistance and propensity-score matching on age, sex, geographic site, year of multidrug-resistant tuberculosis treatment initiation, previous tuberculosis treatment, directly observed therapy, and acid-fast-bacilli smear-positivity to obtain adjusted odds ratios (aORs) and 95% CIs. Secondary analyses were conducted among those with HIV-infection.
FINDINGS
We included 11 920 multidrug-resistant tuberculosis patients. 2997 (25%) were HIV-positive and on ART, 886 (7%) were HIV-positive and not on ART, and 1749 (15%) had extensively drug-resistant tuberculosis. By use of HIV-negative patients as reference, the aOR of death was 2·4 (95% CI 2·0-2·9) for all patients with HIV-infection, 1·8 (1·5-2·2) for HIV-positive patients on ART, and 4·2 (3·0-5·9) for HIV-positive patients with no or unknown ART. Among patients with HIV, use of at least one WHO Group A drug and specific use of moxifloxacin, levofloxacin, bedaquiline, or linezolid were associated with significantly decreased odds of death.
INTERPRETATION
Use of ART and more effective anti-tuberculosis drugs is associated with lower odds of death among HIV-positive patients with multidrug-resistant tuberculosis. Access to these therapies should be urgently pursued.
HIV-infection is associated with increased mortality during multidrug-resistant tuberculosis treatment, but the extent to which the use of antiretroviral therapy (ART) and anti-tuberculosis medications modify this risk are unclear. Our objective was to evaluate how use of these treatments altered mortality risk in HIV-positive adults with multidrug-resistant tuberculosis.
METHODS
We did an individual patient data meta-analysis of adults 18 years or older with confirmed or presumed multidrug-resistant tuberculosis initiating tuberculosis treatment between 1993 and 2016. Data included ART use and anti-tuberculosis medications grouped according to WHO effectiveness categories. The primary analysis compared HIV-positive with HIV-negative patients in terms of death during multidrug-resistant tuberculosis treatment, excluding those lost to follow up, and was stratified by ART use. Analyses used logistic regression after exact matching on country World Bank income classification and drug resistance and propensity-score matching on age, sex, geographic site, year of multidrug-resistant tuberculosis treatment initiation, previous tuberculosis treatment, directly observed therapy, and acid-fast-bacilli smear-positivity to obtain adjusted odds ratios (aORs) and 95% CIs. Secondary analyses were conducted among those with HIV-infection.
FINDINGS
We included 11 920 multidrug-resistant tuberculosis patients. 2997 (25%) were HIV-positive and on ART, 886 (7%) were HIV-positive and not on ART, and 1749 (15%) had extensively drug-resistant tuberculosis. By use of HIV-negative patients as reference, the aOR of death was 2·4 (95% CI 2·0-2·9) for all patients with HIV-infection, 1·8 (1·5-2·2) for HIV-positive patients on ART, and 4·2 (3·0-5·9) for HIV-positive patients with no or unknown ART. Among patients with HIV, use of at least one WHO Group A drug and specific use of moxifloxacin, levofloxacin, bedaquiline, or linezolid were associated with significantly decreased odds of death.
INTERPRETATION
Use of ART and more effective anti-tuberculosis drugs is associated with lower odds of death among HIV-positive patients with multidrug-resistant tuberculosis. Access to these therapies should be urgently pursued.
Journal Article > ResearchFull Text
Int J Tuberc Lung Dis. 2023 January 1; Volume 27 (Issue 1); 34-40.; DOI:10.5588/ijtld.22.0324
Zeng C, Mitnick CD, Hewison CCH, Bastard M, Khan PY, et al.
Int J Tuberc Lung Dis. 2023 January 1; Volume 27 (Issue 1); 34-40.; DOI:10.5588/ijtld.22.0324
BACKGROUND
The WHO provides standardized outcome definitions for rifampicin-resistant (RR) and multidrug-resistant (MDR) TB. However, operationalizing these definitions can be challenging in some clinical settings, and incorrect classification may generate bias in reporting and research. Outcomes calculated by algorithms can increase standardization and be adapted to suit the research question. We evaluated concordance between clinician-assigned treatment outcomes and outcomes calculated based on one of two standardized algorithms, one which identified failure at its earliest possible recurrence (i.e., failure-dominant algorithm), and one which calculated the outcome based on culture results at the end of treatment, regardless of early occurrence of failure (i.e., success-dominant algorithm).
METHODS
Among 2,525 patients enrolled in the multi-country endTB observational study, we calculated the frequencies of concordance using cross-tabulations of clinician-assigned and algorithm-assigned outcomes. We summarized the common discrepancies.
RESULTS
Treatment success calculated by algorithms had high concordance with treatment success assigned by clinicians (95.8 and 97.7% for failure-dominant and success-dominant algorithms, respectively). The frequency and pattern of the most common discrepancies varied by country.
CONCLUSION
High concordance was found between clinician-assigned and algorithm-assigned outcomes. Heterogeneity in discrepancies across settings suggests that using algorithms to calculate outcomes may minimize bias.
The WHO provides standardized outcome definitions for rifampicin-resistant (RR) and multidrug-resistant (MDR) TB. However, operationalizing these definitions can be challenging in some clinical settings, and incorrect classification may generate bias in reporting and research. Outcomes calculated by algorithms can increase standardization and be adapted to suit the research question. We evaluated concordance between clinician-assigned treatment outcomes and outcomes calculated based on one of two standardized algorithms, one which identified failure at its earliest possible recurrence (i.e., failure-dominant algorithm), and one which calculated the outcome based on culture results at the end of treatment, regardless of early occurrence of failure (i.e., success-dominant algorithm).
METHODS
Among 2,525 patients enrolled in the multi-country endTB observational study, we calculated the frequencies of concordance using cross-tabulations of clinician-assigned and algorithm-assigned outcomes. We summarized the common discrepancies.
RESULTS
Treatment success calculated by algorithms had high concordance with treatment success assigned by clinicians (95.8 and 97.7% for failure-dominant and success-dominant algorithms, respectively). The frequency and pattern of the most common discrepancies varied by country.
CONCLUSION
High concordance was found between clinician-assigned and algorithm-assigned outcomes. Heterogeneity in discrepancies across settings suggests that using algorithms to calculate outcomes may minimize bias.
Journal Article > Meta-AnalysisFull Text
Lancet. 2018 September 8; Volume 392 (Issue 10150); 821-834.; DOI:10.1016/S0140-6736(18)31644-1
Ahmad N, Ahuja SD, Akkerman OW, Alffenaar JWC, Anderson LF, et al.
Lancet. 2018 September 8; Volume 392 (Issue 10150); 821-834.; DOI:10.1016/S0140-6736(18)31644-1
BACKGROUND
Treatment outcomes for multidrug-resistant tuberculosis remain poor. We aimed to estimate the association of treatment success and death with the use of individual drugs, and the optimal number and duration of treatment with those drugs in patients with multidrug-resistant tuberculosis.
METHODS
In this individual patient data meta-analysis, we searched MEDLINE, Embase, and the Cochrane Library to identify potentially eligible observational and experimental studies published between Jan 1, 2009, and April 30, 2016. We also searched reference lists from all systematic reviews of treatment of multidrug-resistant tuberculosis published since 2009. To be eligible, studies had to report original results, with end of treatment outcomes (treatment completion [success], failure, or relapse) in cohorts of at least 25 adults (aged >18 years). We used anonymised individual patient data from eligible studies, provided by study investigators, regarding clinical characteristics, treatment, and outcomes. Using propensity score-matched generalised mixed effects logistic, or linear regression, we calculated adjusted odds ratios and adjusted risk differences for success or death during treatment, for specific drugs currently used to treat multidrug-resistant tuberculosis, as well as the number of drugs used and treatment duration.
FINDINGS
Of 12 030 patients from 25 countries in 50 studies, 7346 (61%) had treatment success, 1017 (8%) had failure or relapse, and 1729 (14%) died. Compared with failure or relapse, treatment success was positively associated with the use of linezolid (adjusted risk difference 0·15, 95% CI 0·11 to 0·18), levofloxacin (0·15, 0·13 to 0·18), carbapenems (0·14, 0·06 to 0·21), moxifloxacin (0·11, 0·08 to 0·14), bedaquiline (0·10, 0·05 to 0·14), and clofazimine (0·06, 0·01 to 0·10). There was a significant association between reduced mortality and use of linezolid (-0·20, -0·23 to -0·16), levofloxacin (-0·06, -0·09 to -0·04), moxifloxacin (-0·07, -0·10 to -0·04), or bedaquiline (-0·14, -0·19 to -0·10). Compared with regimens without any injectable drug, amikacin provided modest benefits, but kanamycin and capreomycin were associated with worse outcomes. The remaining drugs were associated with slight or no improvements in outcomes. Treatment outcomes were significantly worse for most drugs if they were used despite in-vitro resistance. The optimal number of effective drugs seemed to be five in the initial phase, and four in the continuation phase. In these adjusted analyses, heterogeneity, based on a simulated I2 method, was high for approximately half the estimates for specific drugs, although relatively low for number of drugs and durations analyses.
INTERPRETATION
Although inferences are limited by the observational nature of these data, treatment outcomes were significantly better with use of linezolid, later generation fluoroquinolones, bedaquiline, clofazimine, and carbapenems for treatment of multidrug-resistant tuberculosis. These findings emphasise the need for trials to ascertain the optimal combination and duration of these drugs for treatment of this condition.
Treatment outcomes for multidrug-resistant tuberculosis remain poor. We aimed to estimate the association of treatment success and death with the use of individual drugs, and the optimal number and duration of treatment with those drugs in patients with multidrug-resistant tuberculosis.
METHODS
In this individual patient data meta-analysis, we searched MEDLINE, Embase, and the Cochrane Library to identify potentially eligible observational and experimental studies published between Jan 1, 2009, and April 30, 2016. We also searched reference lists from all systematic reviews of treatment of multidrug-resistant tuberculosis published since 2009. To be eligible, studies had to report original results, with end of treatment outcomes (treatment completion [success], failure, or relapse) in cohorts of at least 25 adults (aged >18 years). We used anonymised individual patient data from eligible studies, provided by study investigators, regarding clinical characteristics, treatment, and outcomes. Using propensity score-matched generalised mixed effects logistic, or linear regression, we calculated adjusted odds ratios and adjusted risk differences for success or death during treatment, for specific drugs currently used to treat multidrug-resistant tuberculosis, as well as the number of drugs used and treatment duration.
FINDINGS
Of 12 030 patients from 25 countries in 50 studies, 7346 (61%) had treatment success, 1017 (8%) had failure or relapse, and 1729 (14%) died. Compared with failure or relapse, treatment success was positively associated with the use of linezolid (adjusted risk difference 0·15, 95% CI 0·11 to 0·18), levofloxacin (0·15, 0·13 to 0·18), carbapenems (0·14, 0·06 to 0·21), moxifloxacin (0·11, 0·08 to 0·14), bedaquiline (0·10, 0·05 to 0·14), and clofazimine (0·06, 0·01 to 0·10). There was a significant association between reduced mortality and use of linezolid (-0·20, -0·23 to -0·16), levofloxacin (-0·06, -0·09 to -0·04), moxifloxacin (-0·07, -0·10 to -0·04), or bedaquiline (-0·14, -0·19 to -0·10). Compared with regimens without any injectable drug, amikacin provided modest benefits, but kanamycin and capreomycin were associated with worse outcomes. The remaining drugs were associated with slight or no improvements in outcomes. Treatment outcomes were significantly worse for most drugs if they were used despite in-vitro resistance. The optimal number of effective drugs seemed to be five in the initial phase, and four in the continuation phase. In these adjusted analyses, heterogeneity, based on a simulated I2 method, was high for approximately half the estimates for specific drugs, although relatively low for number of drugs and durations analyses.
INTERPRETATION
Although inferences are limited by the observational nature of these data, treatment outcomes were significantly better with use of linezolid, later generation fluoroquinolones, bedaquiline, clofazimine, and carbapenems for treatment of multidrug-resistant tuberculosis. These findings emphasise the need for trials to ascertain the optimal combination and duration of these drugs for treatment of this condition.
Journal Article > Research
PLOS Glob Public Health. 2023 April 28; Volume 3 (Issue 4); e0000818.; DOI:10.1371/journal.pgph.0000818
Rodriguez CA, Lodi S, Horsburgh CR, Mitnick CD, Bastard M, et al.
PLOS Glob Public Health. 2023 April 28; Volume 3 (Issue 4); e0000818.; DOI:10.1371/journal.pgph.0000818
Clarity about the role of delamanid in longer regimens for multidrug-resistant TB is needed after discordant Phase IIb and Phase III randomized controlled trial results. The Phase IIb trial found that the addition of delamanid to a background regimen hastened culture conversion; the results of the Phase III trial were equivocal. We evaluated the effect of adding delamanid for 24 weeks to three-drug MDR/RR-TB regimens on two- and six-month culture conversion in the endTB observational study. We used pooled logistic regression to estimate the observational analogue of the intention-to-treat effect (aITT) adjusting for baseline confounders and to estimate the observational analogue of the per-protocol effect (aPP) using inverse probability of censoring weighting to control for time-varying confounding. At treatment initiation, 362 patients received three likely effective drugs (delamanid-free) or three likely effective drugs plus delamanid (delamanid-containing). Over 80% of patients received two to three Group A drugs (bedaquiline, linezolid, moxifloxacin/levofloxacin) in their regimen. We found no evidence the addition of delamanid to a three-drug regimen increased two-month (aITT relative risk: 0.90 (95% CI: 0.73–1.11), aPP relative risk: 0.89 (95% CI: 0.66–1.21)) or six-month culture conversion (aITT relative risk: 0.94 (95% CI: 0.84, 1.02), aPP relative risk: 0.93 (95% CI: 0.83, 1.04)). In regimens containing combinations of three likely effective, highly active anti-TB drugs the addition of delamanid had no discernible effect on culture conversion at two or six months. As the standard of care for MDR/RR-TB treatment becomes more potent, it may become increasingly difficult to detect the benefit of adding a single agent to standard of care MDR/RR-TB regimens. Novel approaches like those implemented may help account for background regimens and establish effectiveness of new chemical entities.
Journal Article > ResearchFull Text
Int J Tuberc Lung Dis. 2023 June 1; Volume 27 (Issue 6); 451-457.; DOI:10.5588/ijtld.22.0613
Rich ML, Khan UT, Zeng C, LaHood AN, Franke MF, et al.
Int J Tuberc Lung Dis. 2023 June 1; Volume 27 (Issue 6); 451-457.; DOI:10.5588/ijtld.22.0613
English
Français
BACKGROUND
Evidence of the effectiveness of the WHO-recommended design of longer individualized regimens for multidrug- or rifampicin-resistant TB (MDR/RR-TB) is limited.
OBJECTIVES
To report end-of-treatment outcomes for MDR/RR-TB patients from a 2015–2018 multi-country cohort that received a regimen consistent with current 2022 WHO updated recommendations and describe the complexities of comparing regimens.
METHODS
We analyzed a subset of participants from the endTB Observational Study who initiated a longer MDR/RR-TB regimen that was consistent with subsequent 2022 WHO guidance on regimen design for longer treatments. We excluded individuals who received an injectable agent or who received fewer than four likely effective drugs.
RESULTS
Of the 759 participants analyzed, 607 (80.0%, 95% CI 77.0–82.7) experienced successful end-of-treatment outcomes. The frequency of success was high across groups, whether stratified on number of Group A drugs or fluoroquinolone resistance, and ranged from 72.1% to 90.0%. Regimens were highly variable regarding composition and the duration of individual drugs.
CONCLUSIONS
Longer, all-oral, individualized regimens that were consistent with 2022 WHO guidance on regimen design had high frequencies of treatment success. Heterogeneous regimen compositions and drug durations precluded meaningful comparisons. Future research should examine which combinations of drugs maximize safety/tolerability and effectiveness.
Evidence of the effectiveness of the WHO-recommended design of longer individualized regimens for multidrug- or rifampicin-resistant TB (MDR/RR-TB) is limited.
OBJECTIVES
To report end-of-treatment outcomes for MDR/RR-TB patients from a 2015–2018 multi-country cohort that received a regimen consistent with current 2022 WHO updated recommendations and describe the complexities of comparing regimens.
METHODS
We analyzed a subset of participants from the endTB Observational Study who initiated a longer MDR/RR-TB regimen that was consistent with subsequent 2022 WHO guidance on regimen design for longer treatments. We excluded individuals who received an injectable agent or who received fewer than four likely effective drugs.
RESULTS
Of the 759 participants analyzed, 607 (80.0%, 95% CI 77.0–82.7) experienced successful end-of-treatment outcomes. The frequency of success was high across groups, whether stratified on number of Group A drugs or fluoroquinolone resistance, and ranged from 72.1% to 90.0%. Regimens were highly variable regarding composition and the duration of individual drugs.
CONCLUSIONS
Longer, all-oral, individualized regimens that were consistent with 2022 WHO guidance on regimen design had high frequencies of treatment success. Heterogeneous regimen compositions and drug durations precluded meaningful comparisons. Future research should examine which combinations of drugs maximize safety/tolerability and effectiveness.
Journal Article > ResearchAbstract Only
Eur Respir J. 2021 June 17; Online ahead of print; 2004345.; DOI:10.1183/13993003.04345-2020
Khan PY, Franke MF, Hewison CCH, Seung KJ, Huerga H, et al.
Eur Respir J. 2021 June 17; Online ahead of print; 2004345.; DOI:10.1183/13993003.04345-2020
BACKGROUND
Recent World Health Organisation guidance on drug-resistant tuberculosis treatment de-prioritised injectable agents, in use for decades, and endorsed all-oral longer regimens. However, questions remain about the role of the injectable agent, particularly in the context of regimens using new and repurposed drugs. We compared the effectiveness of an injectable-containing regimen to that of an all-oral regimen among patients with drug-resistant tuberculosis who received bedaquiline- and/or delamanid as part of their multidrug regimen.
METHODS
Patients with a positive baseline culture were included. Six-month culture conversion was defined as two consecutive negative cultures collected >15 days apart. We derived predicted probabilities of culture conversion and relative risk using marginal standardisation methods.
RESULTS
Culture conversion was observed in 83.8% (526/628) of patients receiving an all-oral regimen and 85.5% (425/497) of those receiving an injectable-containing regimen. The adjusted relative risk comparing injectable-containing regimens to all-oral regimens was 0.96 (95%CI: 0.88–1.04). We found very weak evidence of effect modification by HIV status: among patients living with HIV, there was a small increase in the frequency of conversion among those receiving an injectable-containing regimen, relative to an all-oral regimen, which was not apparent in HIV-negative patients.
CONCLUSIONS
Among individuals receiving bedaquiline and/or delamanid as part of a multidrug regimen for drug-resistant tuberculosis, there was no significant difference between those who received an injectable and those who did not regarding culture conversion within 6 months. The potential contribution of injectable agents in the treatment of drug-resistant tuberculosis among those who were HIV positive requires further study.
Recent World Health Organisation guidance on drug-resistant tuberculosis treatment de-prioritised injectable agents, in use for decades, and endorsed all-oral longer regimens. However, questions remain about the role of the injectable agent, particularly in the context of regimens using new and repurposed drugs. We compared the effectiveness of an injectable-containing regimen to that of an all-oral regimen among patients with drug-resistant tuberculosis who received bedaquiline- and/or delamanid as part of their multidrug regimen.
METHODS
Patients with a positive baseline culture were included. Six-month culture conversion was defined as two consecutive negative cultures collected >15 days apart. We derived predicted probabilities of culture conversion and relative risk using marginal standardisation methods.
RESULTS
Culture conversion was observed in 83.8% (526/628) of patients receiving an all-oral regimen and 85.5% (425/497) of those receiving an injectable-containing regimen. The adjusted relative risk comparing injectable-containing regimens to all-oral regimens was 0.96 (95%CI: 0.88–1.04). We found very weak evidence of effect modification by HIV status: among patients living with HIV, there was a small increase in the frequency of conversion among those receiving an injectable-containing regimen, relative to an all-oral regimen, which was not apparent in HIV-negative patients.
CONCLUSIONS
Among individuals receiving bedaquiline and/or delamanid as part of a multidrug regimen for drug-resistant tuberculosis, there was no significant difference between those who received an injectable and those who did not regarding culture conversion within 6 months. The potential contribution of injectable agents in the treatment of drug-resistant tuberculosis among those who were HIV positive requires further study.