Journal Article > ResearchFull Text
Lancet Respir Med. 2017 March 15 (Issue 4)
Dheda K, Gumbo T, Maartens G, Dooley KE, McNerney R, et al.
Lancet Respir Med. 2017 March 15 (Issue 4)
Global tuberculosis incidence has declined marginally over the past decade, and tuberculosis remains out of control in several parts of the world including Africa and Asia. Although tuberculosis control has been effective in some regions of the world, these gains are threatened by the increasing burden of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. XDR tuberculosis has evolved in several tuberculosis-endemic countries to drug-incurable or programmatically incurable tuberculosis (totally drug-resistant tuberculosis). This poses several challenges similar to those encountered in the pre-chemotherapy era, including the inability to cure tuberculosis, high mortality, and the need for alternative methods to prevent disease transmission. This phenomenon mirrors the worldwide increase in antimicrobial resistance and the emergence of other MDR pathogens, such as malaria, HIV, and Gram-negative bacteria. MDR and XDR tuberculosis are associated with high morbidity and substantial mortality, are a threat to health-care workers, prohibitively expensive to treat, and are therefore a serious public health problem. In this Commission, we examine several aspects of drug-resistant tuberculosis. The traditional view that acquired resistance to antituberculous drugs is driven by poor compliance and programmatic failure is now being questioned, and several lines of evidence suggest that alternative mechanisms-including pharmacokinetic variability, induction of efflux pumps that transport the drug out of cells, and suboptimal drug penetration into tuberculosis lesions-are likely crucial to the pathogenesis of drug-resistant tuberculosis. These factors have implications for the design of new interventions, drug delivery and dosing mechanisms, and public health policy. We discuss epidemiology and transmission dynamics, including new insights into the fundamental biology of transmission, and we review the utility of newer diagnostic tools, including molecular tests and next-generation whole-genome sequencing, and their potential for clinical effectiveness. Relevant research priorities are highlighted, including optimal medical and surgical management, the role of newer and repurposed drugs (including bedaquiline, delamanid, and linezolid), pharmacokinetic and pharmacodynamic considerations, preventive strategies (such as prophylaxis in MDR and XDR contacts), palliative and patient-orientated care aspects, and medicolegal and ethical issues.
Journal Article > ResearchFull Text
Lancet Infect Dis. 2022 May 2; Online ahead of print; DOI:10.1016/S1473-3099(21)00811-2
Ndjeka N, Campbell JR, Meintjes GA, Maartens G, Schaaf HS, et al.
Lancet Infect Dis. 2022 May 2; Online ahead of print; DOI:10.1016/S1473-3099(21)00811-2
BACKGROUND
There is a need for short and safe all-oral treatment of rifampicin-resistant tuberculosis. We compared outcomes up to 24 months after treatment initiation for patients with rifampicin-resistant tuberculosis in South Africa treated with a short, all-oral bedaquiline-containing regimen (bedaquiline group), or a short, injectable-containing regimen (injectable group).
METHODS
Patients with rifampicin-resistant tuberculosis, aged 18 years or older, eligible for a short regimen starting treatment between Jan 1 and Dec 31, 2017, with a bedaquiline-containing or WHO recommended injectable containing treatment regimen of 9–12 months, registered in the drug-resistant tuberculosis database (EDRWeb), and with known age, sex, HIV status, and national identification number were eligible for study inclusion; patients receiving linezolid, carbapenems, terizidone or cycloserine, delamanid, or para-aminosalicylic acid were excluded. Bedaquiline was given at a dose of 400 mg once daily for two weeks followed by 200 mg three times a week for 22 weeks. To compare regimens, patients were exactly matched on HIV and ART status, previous tuberculosis treatment history, and baseline acid-fast bacilli smear and culture result, while propensity score matched on age, sex, province of treatment, and isoniazid-susceptibility status. We did binomial linear regression to estimate adjusted risk differences (aRD) and 95% CIs for 24-month outcomes, which included: treatment success (ie, cure or treatment completion without evidence of recurrence) versus all other outcomes, survival versus death, disease free survival versus survival with treatment failure or recurrence, and loss to follow-up versus all other outcomes.
FINDINGS
Overall, 1387 (14%) of 10152 patients with rifampicin-resistant tuberculosis treated during 2017 met inclusion criteria; 688 in the bedaquiline group and 699 in the injectable group. Four patients (1%) had treatment failure or recurrence, 44 (6%) were lost to follow-up, and 162 (24%) died in the bedaquiline group, compared with 17 (2%), 87 (12%), and 199 (28%), respectively, in the injectable group. In adjusted analyses, treatment success was 14% (95% CI 8–20) higher in the bedaquiline group than in the injectable group (70% vs 57%); loss to follow-up was 4% (1–8) lower in the bedaquiline group (6% vs 12%); and disease-free survival was 2% (0–5) higher in the bedaquiline group (99% vs 97%). The bedaquiline group had 8% (4–11) lower risk of mortality during treatment (17·0% vs 22·4%), but there was no difference in mortality post-treatment.
INTERPRETATION
Patients in the bedaquiline group experienced significantly higher rates of treatment success at 24 months. This finding supports the use of short bedaquiline-containing regimens in eligible patients.
FUNDING
WHO Global TB Programme.
There is a need for short and safe all-oral treatment of rifampicin-resistant tuberculosis. We compared outcomes up to 24 months after treatment initiation for patients with rifampicin-resistant tuberculosis in South Africa treated with a short, all-oral bedaquiline-containing regimen (bedaquiline group), or a short, injectable-containing regimen (injectable group).
METHODS
Patients with rifampicin-resistant tuberculosis, aged 18 years or older, eligible for a short regimen starting treatment between Jan 1 and Dec 31, 2017, with a bedaquiline-containing or WHO recommended injectable containing treatment regimen of 9–12 months, registered in the drug-resistant tuberculosis database (EDRWeb), and with known age, sex, HIV status, and national identification number were eligible for study inclusion; patients receiving linezolid, carbapenems, terizidone or cycloserine, delamanid, or para-aminosalicylic acid were excluded. Bedaquiline was given at a dose of 400 mg once daily for two weeks followed by 200 mg three times a week for 22 weeks. To compare regimens, patients were exactly matched on HIV and ART status, previous tuberculosis treatment history, and baseline acid-fast bacilli smear and culture result, while propensity score matched on age, sex, province of treatment, and isoniazid-susceptibility status. We did binomial linear regression to estimate adjusted risk differences (aRD) and 95% CIs for 24-month outcomes, which included: treatment success (ie, cure or treatment completion without evidence of recurrence) versus all other outcomes, survival versus death, disease free survival versus survival with treatment failure or recurrence, and loss to follow-up versus all other outcomes.
FINDINGS
Overall, 1387 (14%) of 10152 patients with rifampicin-resistant tuberculosis treated during 2017 met inclusion criteria; 688 in the bedaquiline group and 699 in the injectable group. Four patients (1%) had treatment failure or recurrence, 44 (6%) were lost to follow-up, and 162 (24%) died in the bedaquiline group, compared with 17 (2%), 87 (12%), and 199 (28%), respectively, in the injectable group. In adjusted analyses, treatment success was 14% (95% CI 8–20) higher in the bedaquiline group than in the injectable group (70% vs 57%); loss to follow-up was 4% (1–8) lower in the bedaquiline group (6% vs 12%); and disease-free survival was 2% (0–5) higher in the bedaquiline group (99% vs 97%). The bedaquiline group had 8% (4–11) lower risk of mortality during treatment (17·0% vs 22·4%), but there was no difference in mortality post-treatment.
INTERPRETATION
Patients in the bedaquiline group experienced significantly higher rates of treatment success at 24 months. This finding supports the use of short bedaquiline-containing regimens in eligible patients.
FUNDING
WHO Global TB Programme.
Journal Article > CommentaryFull Text
J Adolesc Health. 2023 March 1; Volume 72 (Issue 3); 323-331.; DOI:10.1016/j.jadohealth.2022.10.036
Chiang SS, Waterous PM, Atieno VF, Bernays S, Bondarenko Y, et al.
J Adolesc Health. 2023 March 1; Volume 72 (Issue 3); 323-331.; DOI:10.1016/j.jadohealth.2022.10.036
Journal Article > ResearchFull Text
Int J Tuberc Lung Dis. 2020 October 1; Volume 24; DOI:10.5588/ijtld.20.0174
Ndjeka N, Hughes J, Reuter A, Conradie F, Enwerem M, et al.
Int J Tuberc Lung Dis. 2020 October 1; Volume 24; DOI:10.5588/ijtld.20.0174
Worldwide uptake of new drugs in the treatment of rifampicin-resistant tuberculosis (RR-TB) has been extremely low. In June 2018, ahead of the release of the updated WHO guidelines for the management of RR-TB, South Africa announced that bedaquiline (BDQ) would be provided to virtually all RR-TB patients on shorter or longer regimens. South Africa has been the global leader in accessing BDQ for patients with RR-TB, who now represent 60% of the global BDQ cohort. The use of BDQ within a shorter modified regimen has generated the programmatic data underpinning the most recent change in WHO guidelines endorsing a shorter, injectable-free regimen. Progressive policies on access to new drugs have resulted in improved favourable outcomes and a reduction in mortality among RR-TB patients in South Africa. This supported global policy change. The strategies underpinning these bold actions include close collaboration between the South African National TB Programme and partners, introduction of new TB diagnostic tools in closely monitored conditions and the use of locally generated programmatic evidence to inform country policy changes. In this paper, we summarise a decade´s work that led to the bold decision to use a modified, short, injectable-free regimen with BDQ and linezolid under carefully monitored programmatic conditions.
Journal Article > Meta-AnalysisFull Text
PLOS Med. 2012 August 28; Volume 9 (Issue 8); DOI:10.1371/journal.pmed.1001300
Ahuja SD, Ashkin D, Avendano M, Banerjee R, Bayona J, et al.
PLOS Med. 2012 August 28; Volume 9 (Issue 8); DOI:10.1371/journal.pmed.1001300
Treatment of multidrug resistant tuberculosis (MDR-TB) is lengthy, toxic, expensive, and has generally poor outcomes. We undertook an individual patient data meta-analysis to assess the impact on outcomes of the type, number, and duration of drugs used to treat MDR-TB.
Journal Article > ReviewFull Text
Am J Respir Crit Care Med. 2016 November 17; Volume 195 (Issue 101); 1300-1310.; DOI:10.1164/rccm.201606-1227CI
Harausz EP, Garcia-Prats AJ, Seddon JA, Schaaf HS, Hesseling AC, et al.
Am J Respir Crit Care Med. 2016 November 17; Volume 195 (Issue 101); 1300-1310.; DOI:10.1164/rccm.201606-1227CI
It is estimated that 33,000 children develop multidrug-resistant tuberculosis (MDR-TB) each year. In spite of these numbers, children and adolescents have limited access to the new and repurposed MDR-TB drugs. There is also little clinical guidance for the use of these drugs and for the shorter MDR-TB regimen in the pediatric population. This is despite the fact that these drugs and regimens are associated with improved interim outcomes and acceptable safety profiles in adults. This review fills a gap in the pediatric MDR-TB literature by providing practice-based recommendations for the use of the new (delamanid and bedaquiline) and repurposed (linezolid and clofazimine) MDR-TB drugs and the new shorter MDR-TB regimen in children and adolescents.
Journal Article > Meta-AnalysisFull Text
Int J Infect Dis. 2020 February 1; Volume 92; DOI:10.1016/j.ijid.2020.01.042
Migliori GB, Tiberi S, Zumla A, Petersen E, Chakaya JM, et al.
Int J Infect Dis. 2020 February 1; Volume 92; DOI:10.1016/j.ijid.2020.01.042
The continuous flow of new research articles on MDR-TB diagnosis, treatment, prevention and rehabilitation requires frequent update of existing guidelines. This review is aimed at providing clinicians and public health staff with an updated and easy-to-consult document arising from consensus of Global Tuberculosis Network (GTN) experts. The core published documents and guidelines have been reviewed including the recently published MDR-TB WHO rapid advice and ATS/CDC/ERS/IDSA guidelines. After a rapid review of epidemiology and risk factors, the clinical priorities on MDR-TB diagnosis (including whole genome sequencing and drug-susceptibility testing interpretations) and treatment (treatment design and management, TB in children) are discussed. Furthermore, the review comprehensively describes the latest information on contact tracing and LTBI management in MDR-TB contacts, while providing guidance on post-treatment functional evaluation and rehabilitation of TB sequelae, infection control and other public health priorities.
Journal Article > Meta-AnalysisFull Text
Lancet Infect Dis. 2012 February 27; Volume 12 (Issue 6); DOI:10.1016/S1473-3099(12)70033-6
Ettehad D, Schaaf HS, Seddon JA, Cooke GS, Ford NP
Lancet Infect Dis. 2012 February 27; Volume 12 (Issue 6); DOI:10.1016/S1473-3099(12)70033-6
Journal Article > ResearchFull Text
Int J Tuberc Lung Dis. 2023 August 1; Volume 27 (Issue 8); 584-598.; DOI:10.5588/ijtld.23.0085
Chiang SS, Graham SM, Schaaf HS, Marais BJ, Sant’Anna CC, et al.
Int J Tuberc Lung Dis. 2023 August 1; Volume 27 (Issue 8); 584-598.; DOI:10.5588/ijtld.23.0085
BACKGROUND
These clinical standards aim to provide guidance for diagnosis, treatment, and management of drug-susceptible TB in children and adolescents.
METHODS
Fifty-two global experts in paediatric TB participated in a Delphi consensus process. After eight rounds of revisions, 51/52 (98%) participants endorsed the final document.
RESULTS
Eight standards were identified: Standard 1, Age and developmental stage are critical considerations in the assessment and management of TB; Standard 2, Children and adolescents with symptoms and signs of TB disease should undergo prompt evaluation, and diagnosis and treatment initiation should not depend on microbiological confirmation; Standard 3, Treatment initiation is particularly urgent in children and adolescents with presumptive TB meningitis and disseminated (miliary) TB; Standard 4, Children and adolescents should be treated with an appropriate weight-based regimen; Standard 5, Treating TB infection (TBI) is important to prevent disease; Standard 6, Children and adolescents should receive home-based/community-based treatment support whenever possible; Standard 7, Children, adolescents, and their families should be provided age-appropriate support to optimise engagement in care and clinical outcomes; and Standard 8, Case reporting and contact tracing should be conducted for each child and adolescent.
CONCLUSION
These consensus-based clinical standards, which should be adapted to local contexts, will improve the care of children and adolescents affected by TB.
These clinical standards aim to provide guidance for diagnosis, treatment, and management of drug-susceptible TB in children and adolescents.
METHODS
Fifty-two global experts in paediatric TB participated in a Delphi consensus process. After eight rounds of revisions, 51/52 (98%) participants endorsed the final document.
RESULTS
Eight standards were identified: Standard 1, Age and developmental stage are critical considerations in the assessment and management of TB; Standard 2, Children and adolescents with symptoms and signs of TB disease should undergo prompt evaluation, and diagnosis and treatment initiation should not depend on microbiological confirmation; Standard 3, Treatment initiation is particularly urgent in children and adolescents with presumptive TB meningitis and disseminated (miliary) TB; Standard 4, Children and adolescents should be treated with an appropriate weight-based regimen; Standard 5, Treating TB infection (TBI) is important to prevent disease; Standard 6, Children and adolescents should receive home-based/community-based treatment support whenever possible; Standard 7, Children, adolescents, and their families should be provided age-appropriate support to optimise engagement in care and clinical outcomes; and Standard 8, Case reporting and contact tracing should be conducted for each child and adolescent.
CONCLUSION
These consensus-based clinical standards, which should be adapted to local contexts, will improve the care of children and adolescents affected by TB.
Journal Article > Meta-AnalysisFull Text
PLOS Med. 2018 July 11; Volume 15 (Issue 7); e1002591.; DOI:10.1371/journal.pmed.1002591
Harausz EP, Garcia-Prats AJ, Law S, Schaaf HS, Kredo T, et al.
PLOS Med. 2018 July 11; Volume 15 (Issue 7); e1002591.; DOI:10.1371/journal.pmed.1002591