Journal Article > Meta-AnalysisFull Text
Eur Respir J. 2020 March 20; Volume 55 (Issue 3); 1901467.; DOI:10.1183/13993003.01467-2019
Abidi S, Achar J, Assao Neino MM, Bang D, Benedetti A, et al.
Eur Respir J. 2020 March 20; Volume 55 (Issue 3); 1901467.; DOI:10.1183/13993003.01467-2019
We sought to compare the effectiveness of two World Health Organization (WHO)-recommended regimens for the treatment of rifampin- or multidrug-resistant (RR/MDR) tuberculosis (TB): a standardised regimen of 9-12 months (the "shorter regimen") and individualised regimens of ≥20 months ("longer regimens").
We collected individual patient data from observational studies identified through systematic reviews and a public call for data. We included patients meeting WHO eligibility criteria for the shorter regimen: not previously treated with second-line drugs, and with fluoroquinolone- and second-line injectable agent-susceptible RR/MDR-TB. We used propensity score matched, mixed effects meta-regression to calculate adjusted odds ratios and adjusted risk differences (aRDs) for failure or relapse, death within 12 months of treatment initiation and loss to follow-up.
We included 2625 out of 3378 (77.7%) individuals from nine studies of shorter regimens and 2717 out of 13 104 (20.7%) individuals from 53 studies of longer regimens. Treatment success was higher with the shorter regimen than with longer regimens (pooled proportions 80.0% versus 75.3%), due to less loss to follow-up with the former (aRD -0.15, 95% CI -0.17- -0.12). The risk difference for failure or relapse was slightly higher with the shorter regimen overall (aRD 0.02, 95% CI 0-0.05) and greater in magnitude with baseline resistance to pyrazinamide (aRD 0.12, 95% CI 0.07-0.16), prothionamide/ethionamide (aRD 0.07, 95% CI -0.01-0.16) or ethambutol (aRD 0.09, 95% CI 0.04-0.13).
In patients meeting WHO criteria for its use, the standardised shorter regimen was associated with substantially less loss to follow-up during treatment compared with individualised longer regimens and with more failure or relapse in the presence of resistance to component medications. Our findings support the need to improve access to reliable drug susceptibility testing.
We collected individual patient data from observational studies identified through systematic reviews and a public call for data. We included patients meeting WHO eligibility criteria for the shorter regimen: not previously treated with second-line drugs, and with fluoroquinolone- and second-line injectable agent-susceptible RR/MDR-TB. We used propensity score matched, mixed effects meta-regression to calculate adjusted odds ratios and adjusted risk differences (aRDs) for failure or relapse, death within 12 months of treatment initiation and loss to follow-up.
We included 2625 out of 3378 (77.7%) individuals from nine studies of shorter regimens and 2717 out of 13 104 (20.7%) individuals from 53 studies of longer regimens. Treatment success was higher with the shorter regimen than with longer regimens (pooled proportions 80.0% versus 75.3%), due to less loss to follow-up with the former (aRD -0.15, 95% CI -0.17- -0.12). The risk difference for failure or relapse was slightly higher with the shorter regimen overall (aRD 0.02, 95% CI 0-0.05) and greater in magnitude with baseline resistance to pyrazinamide (aRD 0.12, 95% CI 0.07-0.16), prothionamide/ethionamide (aRD 0.07, 95% CI -0.01-0.16) or ethambutol (aRD 0.09, 95% CI 0.04-0.13).
In patients meeting WHO criteria for its use, the standardised shorter regimen was associated with substantially less loss to follow-up during treatment compared with individualised longer regimens and with more failure or relapse in the presence of resistance to component medications. Our findings support the need to improve access to reliable drug susceptibility testing.
Journal Article > ResearchFull Text
Lancet Infect Dis. 2022 May 2; Online ahead of print; DOI:10.1016/S1473-3099(21)00811-2
Ndjeka N, Campbell JR, Meintjes GA, Maartens G, Schaaf HS, et al.
Lancet Infect Dis. 2022 May 2; Online ahead of print; DOI:10.1016/S1473-3099(21)00811-2
BACKGROUND
There is a need for short and safe all-oral treatment of rifampicin-resistant tuberculosis. We compared outcomes up to 24 months after treatment initiation for patients with rifampicin-resistant tuberculosis in South Africa treated with a short, all-oral bedaquiline-containing regimen (bedaquiline group), or a short, injectable-containing regimen (injectable group).
METHODS
Patients with rifampicin-resistant tuberculosis, aged 18 years or older, eligible for a short regimen starting treatment between Jan 1 and Dec 31, 2017, with a bedaquiline-containing or WHO recommended injectable containing treatment regimen of 9–12 months, registered in the drug-resistant tuberculosis database (EDRWeb), and with known age, sex, HIV status, and national identification number were eligible for study inclusion; patients receiving linezolid, carbapenems, terizidone or cycloserine, delamanid, or para-aminosalicylic acid were excluded. Bedaquiline was given at a dose of 400 mg once daily for two weeks followed by 200 mg three times a week for 22 weeks. To compare regimens, patients were exactly matched on HIV and ART status, previous tuberculosis treatment history, and baseline acid-fast bacilli smear and culture result, while propensity score matched on age, sex, province of treatment, and isoniazid-susceptibility status. We did binomial linear regression to estimate adjusted risk differences (aRD) and 95% CIs for 24-month outcomes, which included: treatment success (ie, cure or treatment completion without evidence of recurrence) versus all other outcomes, survival versus death, disease free survival versus survival with treatment failure or recurrence, and loss to follow-up versus all other outcomes.
FINDINGS
Overall, 1387 (14%) of 10152 patients with rifampicin-resistant tuberculosis treated during 2017 met inclusion criteria; 688 in the bedaquiline group and 699 in the injectable group. Four patients (1%) had treatment failure or recurrence, 44 (6%) were lost to follow-up, and 162 (24%) died in the bedaquiline group, compared with 17 (2%), 87 (12%), and 199 (28%), respectively, in the injectable group. In adjusted analyses, treatment success was 14% (95% CI 8–20) higher in the bedaquiline group than in the injectable group (70% vs 57%); loss to follow-up was 4% (1–8) lower in the bedaquiline group (6% vs 12%); and disease-free survival was 2% (0–5) higher in the bedaquiline group (99% vs 97%). The bedaquiline group had 8% (4–11) lower risk of mortality during treatment (17·0% vs 22·4%), but there was no difference in mortality post-treatment.
INTERPRETATION
Patients in the bedaquiline group experienced significantly higher rates of treatment success at 24 months. This finding supports the use of short bedaquiline-containing regimens in eligible patients.
FUNDING
WHO Global TB Programme.
There is a need for short and safe all-oral treatment of rifampicin-resistant tuberculosis. We compared outcomes up to 24 months after treatment initiation for patients with rifampicin-resistant tuberculosis in South Africa treated with a short, all-oral bedaquiline-containing regimen (bedaquiline group), or a short, injectable-containing regimen (injectable group).
METHODS
Patients with rifampicin-resistant tuberculosis, aged 18 years or older, eligible for a short regimen starting treatment between Jan 1 and Dec 31, 2017, with a bedaquiline-containing or WHO recommended injectable containing treatment regimen of 9–12 months, registered in the drug-resistant tuberculosis database (EDRWeb), and with known age, sex, HIV status, and national identification number were eligible for study inclusion; patients receiving linezolid, carbapenems, terizidone or cycloserine, delamanid, or para-aminosalicylic acid were excluded. Bedaquiline was given at a dose of 400 mg once daily for two weeks followed by 200 mg three times a week for 22 weeks. To compare regimens, patients were exactly matched on HIV and ART status, previous tuberculosis treatment history, and baseline acid-fast bacilli smear and culture result, while propensity score matched on age, sex, province of treatment, and isoniazid-susceptibility status. We did binomial linear regression to estimate adjusted risk differences (aRD) and 95% CIs for 24-month outcomes, which included: treatment success (ie, cure or treatment completion without evidence of recurrence) versus all other outcomes, survival versus death, disease free survival versus survival with treatment failure or recurrence, and loss to follow-up versus all other outcomes.
FINDINGS
Overall, 1387 (14%) of 10152 patients with rifampicin-resistant tuberculosis treated during 2017 met inclusion criteria; 688 in the bedaquiline group and 699 in the injectable group. Four patients (1%) had treatment failure or recurrence, 44 (6%) were lost to follow-up, and 162 (24%) died in the bedaquiline group, compared with 17 (2%), 87 (12%), and 199 (28%), respectively, in the injectable group. In adjusted analyses, treatment success was 14% (95% CI 8–20) higher in the bedaquiline group than in the injectable group (70% vs 57%); loss to follow-up was 4% (1–8) lower in the bedaquiline group (6% vs 12%); and disease-free survival was 2% (0–5) higher in the bedaquiline group (99% vs 97%). The bedaquiline group had 8% (4–11) lower risk of mortality during treatment (17·0% vs 22·4%), but there was no difference in mortality post-treatment.
INTERPRETATION
Patients in the bedaquiline group experienced significantly higher rates of treatment success at 24 months. This finding supports the use of short bedaquiline-containing regimens in eligible patients.
FUNDING
WHO Global TB Programme.
Journal Article > Meta-AnalysisFull Text
Lancet. 2020 August 8; Volume 396 (Issue 10248); 402-411.; DOI:10.1016/S0140-6736(20)31316-7
Bisson GP, Bastos ML, Campbell JR, Bang D, Brust JCM, et al.
Lancet. 2020 August 8; Volume 396 (Issue 10248); 402-411.; DOI:10.1016/S0140-6736(20)31316-7
BACKGROUND
HIV-infection is associated with increased mortality during multidrug-resistant tuberculosis treatment, but the extent to which the use of antiretroviral therapy (ART) and anti-tuberculosis medications modify this risk are unclear. Our objective was to evaluate how use of these treatments altered mortality risk in HIV-positive adults with multidrug-resistant tuberculosis.
METHODS
We did an individual patient data meta-analysis of adults 18 years or older with confirmed or presumed multidrug-resistant tuberculosis initiating tuberculosis treatment between 1993 and 2016. Data included ART use and anti-tuberculosis medications grouped according to WHO effectiveness categories. The primary analysis compared HIV-positive with HIV-negative patients in terms of death during multidrug-resistant tuberculosis treatment, excluding those lost to follow up, and was stratified by ART use. Analyses used logistic regression after exact matching on country World Bank income classification and drug resistance and propensity-score matching on age, sex, geographic site, year of multidrug-resistant tuberculosis treatment initiation, previous tuberculosis treatment, directly observed therapy, and acid-fast-bacilli smear-positivity to obtain adjusted odds ratios (aORs) and 95% CIs. Secondary analyses were conducted among those with HIV-infection.
FINDINGS
We included 11 920 multidrug-resistant tuberculosis patients. 2997 (25%) were HIV-positive and on ART, 886 (7%) were HIV-positive and not on ART, and 1749 (15%) had extensively drug-resistant tuberculosis. By use of HIV-negative patients as reference, the aOR of death was 2·4 (95% CI 2·0-2·9) for all patients with HIV-infection, 1·8 (1·5-2·2) for HIV-positive patients on ART, and 4·2 (3·0-5·9) for HIV-positive patients with no or unknown ART. Among patients with HIV, use of at least one WHO Group A drug and specific use of moxifloxacin, levofloxacin, bedaquiline, or linezolid were associated with significantly decreased odds of death.
INTERPRETATION
Use of ART and more effective anti-tuberculosis drugs is associated with lower odds of death among HIV-positive patients with multidrug-resistant tuberculosis. Access to these therapies should be urgently pursued.
HIV-infection is associated with increased mortality during multidrug-resistant tuberculosis treatment, but the extent to which the use of antiretroviral therapy (ART) and anti-tuberculosis medications modify this risk are unclear. Our objective was to evaluate how use of these treatments altered mortality risk in HIV-positive adults with multidrug-resistant tuberculosis.
METHODS
We did an individual patient data meta-analysis of adults 18 years or older with confirmed or presumed multidrug-resistant tuberculosis initiating tuberculosis treatment between 1993 and 2016. Data included ART use and anti-tuberculosis medications grouped according to WHO effectiveness categories. The primary analysis compared HIV-positive with HIV-negative patients in terms of death during multidrug-resistant tuberculosis treatment, excluding those lost to follow up, and was stratified by ART use. Analyses used logistic regression after exact matching on country World Bank income classification and drug resistance and propensity-score matching on age, sex, geographic site, year of multidrug-resistant tuberculosis treatment initiation, previous tuberculosis treatment, directly observed therapy, and acid-fast-bacilli smear-positivity to obtain adjusted odds ratios (aORs) and 95% CIs. Secondary analyses were conducted among those with HIV-infection.
FINDINGS
We included 11 920 multidrug-resistant tuberculosis patients. 2997 (25%) were HIV-positive and on ART, 886 (7%) were HIV-positive and not on ART, and 1749 (15%) had extensively drug-resistant tuberculosis. By use of HIV-negative patients as reference, the aOR of death was 2·4 (95% CI 2·0-2·9) for all patients with HIV-infection, 1·8 (1·5-2·2) for HIV-positive patients on ART, and 4·2 (3·0-5·9) for HIV-positive patients with no or unknown ART. Among patients with HIV, use of at least one WHO Group A drug and specific use of moxifloxacin, levofloxacin, bedaquiline, or linezolid were associated with significantly decreased odds of death.
INTERPRETATION
Use of ART and more effective anti-tuberculosis drugs is associated with lower odds of death among HIV-positive patients with multidrug-resistant tuberculosis. Access to these therapies should be urgently pursued.
Journal Article > ResearchFull Text
Lancet Respir Med. 2017 March 15 (Issue 4)
Dheda K, Gumbo T, Maartens G, Dooley KE, McNerney R, et al.
Lancet Respir Med. 2017 March 15 (Issue 4)
Global tuberculosis incidence has declined marginally over the past decade, and tuberculosis remains out of control in several parts of the world including Africa and Asia. Although tuberculosis control has been effective in some regions of the world, these gains are threatened by the increasing burden of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. XDR tuberculosis has evolved in several tuberculosis-endemic countries to drug-incurable or programmatically incurable tuberculosis (totally drug-resistant tuberculosis). This poses several challenges similar to those encountered in the pre-chemotherapy era, including the inability to cure tuberculosis, high mortality, and the need for alternative methods to prevent disease transmission. This phenomenon mirrors the worldwide increase in antimicrobial resistance and the emergence of other MDR pathogens, such as malaria, HIV, and Gram-negative bacteria. MDR and XDR tuberculosis are associated with high morbidity and substantial mortality, are a threat to health-care workers, prohibitively expensive to treat, and are therefore a serious public health problem. In this Commission, we examine several aspects of drug-resistant tuberculosis. The traditional view that acquired resistance to antituberculous drugs is driven by poor compliance and programmatic failure is now being questioned, and several lines of evidence suggest that alternative mechanisms-including pharmacokinetic variability, induction of efflux pumps that transport the drug out of cells, and suboptimal drug penetration into tuberculosis lesions-are likely crucial to the pathogenesis of drug-resistant tuberculosis. These factors have implications for the design of new interventions, drug delivery and dosing mechanisms, and public health policy. We discuss epidemiology and transmission dynamics, including new insights into the fundamental biology of transmission, and we review the utility of newer diagnostic tools, including molecular tests and next-generation whole-genome sequencing, and their potential for clinical effectiveness. Relevant research priorities are highlighted, including optimal medical and surgical management, the role of newer and repurposed drugs (including bedaquiline, delamanid, and linezolid), pharmacokinetic and pharmacodynamic considerations, preventive strategies (such as prophylaxis in MDR and XDR contacts), palliative and patient-orientated care aspects, and medicolegal and ethical issues.
Journal Article > Meta-AnalysisFull Text
Lancet. 2018 September 8; Volume 392 (Issue 10150); 821-834.; DOI:10.1016/S0140-6736(18)31644-1
Ahmad N, Ahuja SD, Akkerman OW, Alffenaar JWC, Anderson LF, et al.
Lancet. 2018 September 8; Volume 392 (Issue 10150); 821-834.; DOI:10.1016/S0140-6736(18)31644-1
BACKGROUND
Treatment outcomes for multidrug-resistant tuberculosis remain poor. We aimed to estimate the association of treatment success and death with the use of individual drugs, and the optimal number and duration of treatment with those drugs in patients with multidrug-resistant tuberculosis.
METHODS
In this individual patient data meta-analysis, we searched MEDLINE, Embase, and the Cochrane Library to identify potentially eligible observational and experimental studies published between Jan 1, 2009, and April 30, 2016. We also searched reference lists from all systematic reviews of treatment of multidrug-resistant tuberculosis published since 2009. To be eligible, studies had to report original results, with end of treatment outcomes (treatment completion [success], failure, or relapse) in cohorts of at least 25 adults (aged >18 years). We used anonymised individual patient data from eligible studies, provided by study investigators, regarding clinical characteristics, treatment, and outcomes. Using propensity score-matched generalised mixed effects logistic, or linear regression, we calculated adjusted odds ratios and adjusted risk differences for success or death during treatment, for specific drugs currently used to treat multidrug-resistant tuberculosis, as well as the number of drugs used and treatment duration.
FINDINGS
Of 12 030 patients from 25 countries in 50 studies, 7346 (61%) had treatment success, 1017 (8%) had failure or relapse, and 1729 (14%) died. Compared with failure or relapse, treatment success was positively associated with the use of linezolid (adjusted risk difference 0·15, 95% CI 0·11 to 0·18), levofloxacin (0·15, 0·13 to 0·18), carbapenems (0·14, 0·06 to 0·21), moxifloxacin (0·11, 0·08 to 0·14), bedaquiline (0·10, 0·05 to 0·14), and clofazimine (0·06, 0·01 to 0·10). There was a significant association between reduced mortality and use of linezolid (-0·20, -0·23 to -0·16), levofloxacin (-0·06, -0·09 to -0·04), moxifloxacin (-0·07, -0·10 to -0·04), or bedaquiline (-0·14, -0·19 to -0·10). Compared with regimens without any injectable drug, amikacin provided modest benefits, but kanamycin and capreomycin were associated with worse outcomes. The remaining drugs were associated with slight or no improvements in outcomes. Treatment outcomes were significantly worse for most drugs if they were used despite in-vitro resistance. The optimal number of effective drugs seemed to be five in the initial phase, and four in the continuation phase. In these adjusted analyses, heterogeneity, based on a simulated I2 method, was high for approximately half the estimates for specific drugs, although relatively low for number of drugs and durations analyses.
INTERPRETATION
Although inferences are limited by the observational nature of these data, treatment outcomes were significantly better with use of linezolid, later generation fluoroquinolones, bedaquiline, clofazimine, and carbapenems for treatment of multidrug-resistant tuberculosis. These findings emphasise the need for trials to ascertain the optimal combination and duration of these drugs for treatment of this condition.
Treatment outcomes for multidrug-resistant tuberculosis remain poor. We aimed to estimate the association of treatment success and death with the use of individual drugs, and the optimal number and duration of treatment with those drugs in patients with multidrug-resistant tuberculosis.
METHODS
In this individual patient data meta-analysis, we searched MEDLINE, Embase, and the Cochrane Library to identify potentially eligible observational and experimental studies published between Jan 1, 2009, and April 30, 2016. We also searched reference lists from all systematic reviews of treatment of multidrug-resistant tuberculosis published since 2009. To be eligible, studies had to report original results, with end of treatment outcomes (treatment completion [success], failure, or relapse) in cohorts of at least 25 adults (aged >18 years). We used anonymised individual patient data from eligible studies, provided by study investigators, regarding clinical characteristics, treatment, and outcomes. Using propensity score-matched generalised mixed effects logistic, or linear regression, we calculated adjusted odds ratios and adjusted risk differences for success or death during treatment, for specific drugs currently used to treat multidrug-resistant tuberculosis, as well as the number of drugs used and treatment duration.
FINDINGS
Of 12 030 patients from 25 countries in 50 studies, 7346 (61%) had treatment success, 1017 (8%) had failure or relapse, and 1729 (14%) died. Compared with failure or relapse, treatment success was positively associated with the use of linezolid (adjusted risk difference 0·15, 95% CI 0·11 to 0·18), levofloxacin (0·15, 0·13 to 0·18), carbapenems (0·14, 0·06 to 0·21), moxifloxacin (0·11, 0·08 to 0·14), bedaquiline (0·10, 0·05 to 0·14), and clofazimine (0·06, 0·01 to 0·10). There was a significant association between reduced mortality and use of linezolid (-0·20, -0·23 to -0·16), levofloxacin (-0·06, -0·09 to -0·04), moxifloxacin (-0·07, -0·10 to -0·04), or bedaquiline (-0·14, -0·19 to -0·10). Compared with regimens without any injectable drug, amikacin provided modest benefits, but kanamycin and capreomycin were associated with worse outcomes. The remaining drugs were associated with slight or no improvements in outcomes. Treatment outcomes were significantly worse for most drugs if they were used despite in-vitro resistance. The optimal number of effective drugs seemed to be five in the initial phase, and four in the continuation phase. In these adjusted analyses, heterogeneity, based on a simulated I2 method, was high for approximately half the estimates for specific drugs, although relatively low for number of drugs and durations analyses.
INTERPRETATION
Although inferences are limited by the observational nature of these data, treatment outcomes were significantly better with use of linezolid, later generation fluoroquinolones, bedaquiline, clofazimine, and carbapenems for treatment of multidrug-resistant tuberculosis. These findings emphasise the need for trials to ascertain the optimal combination and duration of these drugs for treatment of this condition.
Journal Article > Meta-AnalysisFull Text
PLOS Med. 2012 August 28; Volume 9 (Issue 8); DOI:10.1371/journal.pmed.1001300
Ahuja SD, Ashkin D, Avendano M, Banerjee R, Bayona J, et al.
PLOS Med. 2012 August 28; Volume 9 (Issue 8); DOI:10.1371/journal.pmed.1001300
Treatment of multidrug resistant tuberculosis (MDR-TB) is lengthy, toxic, expensive, and has generally poor outcomes. We undertook an individual patient data meta-analysis to assess the impact on outcomes of the type, number, and duration of drugs used to treat MDR-TB.
Journal Article > ResearchFull Text
Int J Tuberc Lung Dis. 2023 December 1; Volume 27 (Issue 12); 885-898.; DOI:10.5588/ijtld.23.0341
du Cros PAK, Greig J, Cross GB, Cousins C, Berry C, et al.
Int J Tuberc Lung Dis. 2023 December 1; Volume 27 (Issue 12); 885-898.; DOI:10.5588/ijtld.23.0341
English
Français
BACKGROUND
The value, speed of completion and robustness of the evidence generated by TB treatment trials could be improved by implementing standards for best practice.
METHODS
A global panel of experts participated in a Delphi process, using a 7-point Likert scale to score and revise draft standards until consensus was reached.
RESULTS
Eleven standards were defined: Standard 1, high quality data on TB regimens are essential to inform clinical and programmatic management; Standard 2, the research questions addressed by TB trials should be relevant to affected communities, who should be included in all trial stages; Standard 3, trials should make every effort to be as inclusive as possible; Standard 4, the most efficient trial designs should be considered to improve the evidence base as quickly and cost effectively as possible, without compromising quality; Standard 5, trial governance should be in line with accepted good clinical practice; Standard 6, trials should investigate and report strategies that promote optimal engagement in care; Standard 7, where possible, TB trials should include pharmacokinetic and pharmacodynamic components; Standard 8, outcomes should include frequency of disease recurrence and post-treatment sequelae; Standard 9, TB trials should aim to harmonise key outcomes and data structures across studies; Standard 10, TB trials should include biobanking; Standard 11, treatment trials should invest in capacity strengthening of local trial and TB programme staff.
CONCLUSION
These standards should improve the efficiency and effectiveness of evidence generation, as well as the translation of research into policy and practice.
The value, speed of completion and robustness of the evidence generated by TB treatment trials could be improved by implementing standards for best practice.
METHODS
A global panel of experts participated in a Delphi process, using a 7-point Likert scale to score and revise draft standards until consensus was reached.
RESULTS
Eleven standards were defined: Standard 1, high quality data on TB regimens are essential to inform clinical and programmatic management; Standard 2, the research questions addressed by TB trials should be relevant to affected communities, who should be included in all trial stages; Standard 3, trials should make every effort to be as inclusive as possible; Standard 4, the most efficient trial designs should be considered to improve the evidence base as quickly and cost effectively as possible, without compromising quality; Standard 5, trial governance should be in line with accepted good clinical practice; Standard 6, trials should investigate and report strategies that promote optimal engagement in care; Standard 7, where possible, TB trials should include pharmacokinetic and pharmacodynamic components; Standard 8, outcomes should include frequency of disease recurrence and post-treatment sequelae; Standard 9, TB trials should aim to harmonise key outcomes and data structures across studies; Standard 10, TB trials should include biobanking; Standard 11, treatment trials should invest in capacity strengthening of local trial and TB programme staff.
CONCLUSION
These standards should improve the efficiency and effectiveness of evidence generation, as well as the translation of research into policy and practice.
Journal Article > ResearchFull Text
Eur Respir J. 2016 September 1; Volume 48 (Issue 4); DOI:10.1183/13993003.00462-2016
Mitnick CD, White RA, Lu C, Rodriguez CA, Bayona J, et al.
Eur Respir J. 2016 September 1; Volume 48 (Issue 4); DOI:10.1183/13993003.00462-2016
Debate persists about monitoring method (culture or smear) and interval (monthly or less frequently) during treatment for multidrug-resistant tuberculosis (MDR-TB). We analysed existing data and estimated the effect of monitoring strategies on timing of failure detection.We identified studies reporting microbiological response to MDR-TB treatment and solicited individual patient data from authors. Frailty survival models were used to estimate pooled relative risk of failure detection in the last 12 months of treatment; hazard of failure using monthly culture was the reference.Data were obtained for 5410 patients across 12 observational studies. During the last 12 months of treatment, failure detection occurred in a median of 3 months by monthly culture; failure detection was delayed by 2, 7, and 9 months relying on bimonthly culture, monthly smear and bimonthly smear, respectively. Risk (95% CI) of failure detection delay resulting from monthly smear relative to culture is 0.38 (0.34-0.42) for all patients and 0.33 (0.25-0.42) for HIV-co-infected patients.Failure detection is delayed by reducing the sensitivity and frequency of the monitoring method. Monthly monitoring of sputum cultures from patients receiving MDR-TB treatment is recommended. Expanded laboratory capacity is needed for high-quality culture, and for smear microscopy and rapid molecular tests.
Journal Article > Meta-AnalysisAbstract
Lancet Respir Med. 2020 March 17; Volume 8 (Issue 4); DOI:10.1016/S2213-2600(20)30047-3
Lan Z, Ahmad N, Baghaei P, Barkane L, Benedetti A, et al.
Lancet Respir Med. 2020 March 17; Volume 8 (Issue 4); DOI:10.1016/S2213-2600(20)30047-3
Journal Article > Meta-AnalysisFull Text
PLOS Med. 2018 July 11; Volume 15 (Issue 7); e1002591.; DOI:10.1371/journal.pmed.1002591
Harausz EP, Garcia-Prats AJ, Law S, Schaaf HS, Kredo T, et al.
PLOS Med. 2018 July 11; Volume 15 (Issue 7); e1002591.; DOI:10.1371/journal.pmed.1002591