Abstract
BACKGROUND
Recent trends to earlier access to anti-retroviral treatment underline the importance of accurate HIV diagnosis. The WHO HIV testing strategy recommends the use of two or three rapid diagnostic tests (RDTs) combined in an algorithm and assume a population is serologically stable over time. Yet RDTs are prone to cross reactivity which can lead to false positive or discordant results. This paper uses discordancy data from Médecins Sans Frontières (MSF) programmes to test the hypothesis that the specificity of RDTs change over place and time.
METHODS
Data was drawn from all MSF test centres in 2007-8 using a parallel testing algorithm. A Bayesian approach was used to derive estimates of disease prevalence, and of test sensitivity and specificity using the software WinBUGS. A comparison of models with different levels of complexity was performed to assess the evidence for changes in test characteristics by location and over time.
RESULTS
106, 035 individuals were included from 51 centres in 10 countries using 7 different RDTs. Discordancy patterns were found to vary by location and time. Model fit statistics confirmed this, with improved fit to the data when test specificity and sensitivity were allowed to vary by centre and over time. Two examples show evidence of variation in specificity between different testing locations within a single country. Finally, within a single test centre, variation in specificity was seen over time with one test becoming more specific and the other less specific.
CONCLUSIONS
This analysis demonstrates the variable specificity of multiple HIV RDTs over geographic location and time. This variability suggests that cross reactivity is occurring and indicates a higher than previously appreciated risk of false positive HIV results using the current WHO testing guidelines. Given the significant consequences of false HIV diagnosis, we suggest that current testing and evaluation strategies be reviewed.