INTRODUCTION
The retention in care of patients undergoing antiretroviral therapy (ART) is a cornerstone for preventing AIDS‐associated morbidity and mortality, as well as further transmission of HIV. Adherence to ART poses particular challenges in conflict‐affected settings like the Central African Republic (CAR). The study objective was to estimate the rate of lost‐to‐follow‐up (LTFU) and determine factors associated with LTFU among patients living with HIV under ART in CAR.
METHODS
A retrospective cohort analysis was conducted using data from patients being managed at 42 representative ART dispensing sites (i.e. management of ≥200 patients) in the seven health regions of CAR which started ART between January 2019 to September 2021 and followed up to December 2021. The outcome of LTFU was defined as a failure of a patient to attend a scheduled ART refill appointment for at least 90 days from the last appointment. Patients were censored at the first LTFU event.
RESULTS
A total of 6844 patients enrolled in ART care were included in the analysis, of whom 67.5% were females. The mean age (standard deviation) was 35.3 years (10.5). Forty‐two per cent (n = 2874/6844) had an LTFU event during the follow‐up period. However, 23.2% (n = 666/2874) returned to care after LTFU. Overall retention in antiretroviral care at 12 months was 64.2% (CI 63.0−65.5), which ranged from 76.1% in the capital to 48.2% in the inner country region. Risk factors related to LTFU were being male (adjusted hazard ratio [aHR] 1.33; CI 1.1−1.5), age < 25 (aHR 1.46; CI 1.1−1.9), living in regions outside the capital (aHR 1.83; CI 1.6−2.3) and undernutrition (aHR 1.13; CI 1.0−1.3).
CONCLUSIONS
Retention to care in CAR is suboptimal, especially in the inner country. Our results underline the difficulties involved in retaining patients in ART in complex settings, the interplay between poor retention, social unrest, stigma, food insecurity and HIV epidemic control, and the need for tailored programming and interventions like differentiated treatment strategies and complementary food provision.
BACKGROUND
Targeted preventive strategies in persons living with HIV (PLWH) require markers to predict visceral leishmaniasis (VL). We conducted a longitudinal study in a HIV-cohort in VL-endemic North-West Ethiopia to 1) describe the pattern of Leishmania markers preceding VL; 2) identify Leishmania markers predictive of VL; 3) develop a clinical management algorithm according to predicted VL risk levels.
METHODS
The PreLeisH study followed 490 adult PLWH free of VL at enrolment for up to two years (2017-2021). Blood RT-PCR targeting Leishmania kDNA, Leishmania serology and Leishmania urine antigen test (KAtex) were performed every 3-6 months. We calculated the sensitivity/specificity of the Leishmania markers for predicting VL and developed an algorithm for distinct clinical management strategies, with VL risk categories defined based on VL history, CD4 count and Leishmania markers (rK39 RDT & RT-PCR).
FINDINGS
At enrolment, 485 (99%) study participants were on antiretroviral treatment; 360/490 (73.5%) were male; the median baseline CD4 count was 392 (IQR 259-586) cells/μL; 135 (27.5%) had previous VL. Incident VL was diagnosed in 34 (6.9%), with 32 (94%) displaying positive Leishmania markers before VL. In those without VL history, baseline rK39 RDT had 60% sensitivity and 84% specificity to predict VL; in patients with previous VL, RT-PCR had 71% sensitivity and 95% specificity. The algorithm defined 442 (92.3%) individuals at low VL risk (routine follow-up), 31 (6.5%) as moderate risk (secondary prophylaxis) and six (1.2%) as high risk (early treatment).
INTERPRETATION
Leishmania infection markers can predict VL risk in PLWH. Interventional studies targeting those at high risk are needed.
FUNDING
The PreLeisH study was supported by grants from the Department of Economy, Science and Innovation of the Flemish Government, Belgium (757013) and the Directorate-General for Development Cooperation and Humanitarian Aid (DGD), Belgium (BE-BCE_KBO-0410057701-prg2022-5-ET).
Human immunodeficiency virus (HIV) co-infection is a major challenge for visceral leishmaniasis (VL) control, particularly in Ethiopia where the incidence of both pathogens is high. VL-HIV often leads to high rates of antileishmanial treatment failure and recurrent VL disease relapses. Considering the high prevalence of HIV and Leishmania in the Ethiopian population, preventing the progression of asymptomatic Leishmania infection to disease would be a valuable asset to VL disease control and to the clinical management of people living with HIV (PLWH). However, such a strategy requires good understanding of risk factors for VL development. In immunocompetent individuals living in Brazil, India, or Iran, the Human Leukocyte Antigen (HLA) gene region has been associated with VL development. We used NanoTYPE, an Oxford Nanopore Technologies sequencing-based HLA genotyping method, to detect associations between HLA genotype and VL development by comparing 78 PLWH with VL history and 46 PLWH that controlled a Leishmania infection, all living in a VL endemic region of North-West Ethiopia. We identified an association between HLA-A*03:01 and increased risk of VL development (OR = 3.89). These data provide candidate HLA alleles that can be further explored for inclusion in a potential Leishmania screen-and-treat strategy in VL endemic regions.
BACKGROUND
Malaria and HIV infection overlap geographically in sub-Saharan Africa and share risk factors. HIV infection increases malaria's severity, especially in pregnant women. The World Health Organization (WHO) recommends intermittent preventive treatment in pregnancy (IPTp) with sulphadoxine-pyrimethamine (SP) for pregnant women living in areas of stable malaria transmission. However, HIV-positive women on daily cotrimoxazole prophylaxis (recommended for prevention of opportunistic infections in people with HIV) cannot receive SP due to adverse drug interactions, so malaria prevention in this vulnerable population currently relies on daily cotrimoxazole prophylaxis alone. This review is based on a new protocol and provides an update to the 2011 Cochrane Review that evaluated alternative drugs for IPTp to prevent malaria in HIV-positive women.
OBJECTIVES
To compare the safety and efficacy of intermittent preventive treatment regimens for malaria prevention in HIV-positive pregnant women.
SEARCH METHODS
We searched CENTRAL, MEDLINE, Embase, three other databases, and two trial registries to 31 January 2024. To identify relevant additional studies or unpublished work, we checked references and contacted study authors and other researchers working on malaria and HIV.
SELECTION CRITERIA
We included randomized controlled trials (RCTs) comparing any intermittent preventive treatment regimen for preventing malaria in HIV-positive pregnant women against daily cotrimoxazole prophylaxis alone, placebo, current or previous standard of care, or combinations of these options. By 'standard of care' we refer to the country's recommended drug regimen to prevent malaria in pregnancy among HIV-positive women, or the treatment that a trial's research team considered to be the standard of care.
DATA COLLECTION AND ANALYSIS
Review authors, in pairs, independently screened all records identified by the search strategy, applied inclusion criteria, assessed risk of bias in included trials, and extracted data. We contacted trial authors when additional information was required. We presented dichotomous outcomes using risk ratios (RRs), count outcomes as incidence rate ratios (IRRs), and continuous outcomes as mean differences (MDs). We presented all measures of effect with 95% confidence intervals (CIs). We assessed the certainty of the evidence using the GRADE approach for what we considered to be the main comparisons and outcomes.
MAIN RESULTS
We included 14 RCTs, with a total of 4976 HIV-positive pregnant women initially randomized. All trials assessed the efficacy and safety of one antimalarial used as IPTp (mefloquine, dihydroartemisinin/piperaquine, SP, or azithromycin) with or without daily cotrimoxazole, compared to daily cotrimoxazole alone, placebo, or a standard of care regimen. We grouped the trials into nine comparisons. Our main comparison evaluated the current standard of care (daily cotrimoxazole) with another drug regimen (mefloquine or dihydroartemisinin/piperaquine) versus daily cotrimoxazole with or without placebo. In this comparison, two trials evaluated mefloquine and three evaluated dihydroartemisinin/piperaquine. We conducted meta-analyses that included trials evaluating dihydroartemisinin/piperaquine plus cotrimoxazole, and trials that evaluated mefloquine plus cotrimoxazole, as we considered there to be no qualitative or quantitative heterogeneity among trials for most outcomes. We considered drug-related adverse events and HIV-related outcomes to be drug-specific. Daily cotrimoxazole prophylaxis plus another drug regimen (mefloquine or dihydroartemisinin/piperaquine) probably results in lower risk of maternal peripheral parasitaemia at delivery (RR 0.62, 95% CI 0.41 to 0.95; 2406 participants, 5 trials; moderate-certainty evidence). It results in little or no difference in maternal anaemia cases at delivery (RR 0.98, 95% CI 0.90 to 1.07; 2417 participants, 3 trials; high-certainty evidence). It probably results in a decrease in placental malaria measured by blood smear (RR 0.54, 95% CI 0.31 to 0.93; 1337 participants, 3 trials; moderate-certainty evidence), and probably results in little or no difference in low birth weight (RR 1.16, 95% CI 0.95 to 1.41; 2915 participants, 5 trials; moderate-certainty evidence). There is insufficient evidence to ascertain whether daily cotrimoxazole prophylaxis plus another drug regimen affects the risk of cord blood parasitaemia (RR 0.27, 95% CI 0.04 to 1.64; 2696 participants, 5 trials; very low-certainty evidence). Daily cotrimoxazole prophylaxis plus another drug regimen probably results in little or no difference in foetal loss (RR 1.03, 95% CI 0.73 to 1.46; 2957 participants, 5 trials; moderate-certainty evidence), and may result in little or no difference in neonatal mortality (RR 1.21, 95% CI 0.68 to 2.14; 2706 participants, 4 trials; low-certainty evidence). Due to the probability of an increased risk of mother-to-child HIV transmission and some adverse drug effects noted with mefloquine, we also looked at the results for dihydroartemisinin/piperaquine specifically. Dihydroartemisinin/piperaquine plus daily contrimoxazole probably results in little to no difference in maternal peripheral parasitaemia (RR 0.59, 95% CI 0.31 to 1.11; 1517 participants, 3 trials; moderate-certainty evidence) or anaemia at delivery (RR 0.95, 95% CI 0.82 to 1.10; 1454 participants, 2 trials; moderate-certainty evidence), but leads to fewer women having placental malaria when measured by histopathologic analysis (RR 0.67, 95% CI 0.50 to 0.90; 1570 participants, 3 trials; high-certainty evidence). The addition of dihydroartemisinin/piperaquine to daily cotrimoxazole probably made little to no difference to rates of low birth weight (RR 1.13, 95% CI 0.87 to 1.48; 1695 participants, 3 trials), foetal loss (RR 1.14, 95% CI 0.68 to 1.90; 1610 participants, 3 trials), or neonatal mortality (RR 1.03, 95% CI 0.39 to 2.72; 1467 participants, 2 trials) (all moderate-certainty evidence). We found low-certainty evidence of no increased risk of gastrointestinal drug-related adverse events (RR 1.42, 95% CI 0.51 to 3.98; 1447 participants, 2 trials) or mother-to-child HIV transmission (RR 1.54, 95% CI 0.26 to 9.19; 1063 participants, 2 trials).
AUTHORS' CONCLUSIONS
Dihydroartemisinin/piperaquine and mefloquine added to daily cotrimoxazole seem to be efficacious in preventing malaria infection in HIV-positive pregnant women compared to daily cotrimoxazole alone. However, increased risk of HIV transmission to the foetus and poor drug tolerability may be barriers to implementation of mefloquine in practice. In contrast, the evidence suggests that dihydroartemisinin/piperaquine does not increase the risk of HIV mother-to-child transmission and is well tolerated.