Journal Article > ResearchFull Text
Antimicrob Agents Chemother. 2021 August 30; Volume 65 (Issue 11); e00364-21.; DOI:10.1128/AAC.00364-21
Salaam-Dreyer Z, Streicher EM, Sirgel FA, Menardo F, Borrell S, et al.
Antimicrob Agents Chemother. 2021 August 30; Volume 65 (Issue 11); e00364-21.; DOI:10.1128/AAC.00364-21
Rifampicin mono-resistant TB (RMR-TB, rifampicin resistance and isoniazid susceptibility) constitutes 38% of all rifampicin-resistant TB (RR-TB) in South Africa and is increasing. We aimed to compare RMR-TB with multidrug-resistant TB (MDR-TB) within a high TB, RR-TB and HIV burden setting. Patient-level clinical data and stored RR-TB isolates from 2008-2017 with available whole genome sequencing (WGS) data were used to describe risk factors associated with RMR-TB and to compare rifampicin-resistance (RR) conferring mutations between RMR-TB and MDR-TB. A subset of isolates with particular RR-conferring mutations were subjected to semi-quantitative rifampicin phenotypic drug susceptibility testing. Among 2,041 routinely diagnosed RR-TB patients, 463 (22.7%) had RMR-TB. HIV-positive individuals (adjusted Odds Ratio 1.4, 95% CI 1.1-1.9) and diagnosis between 2013-2017 versus 2008-2012 (aOR 1.3, 1.1-1.7) were associated with RMR-TB. Among 1,119 (54.8%) patients with available WGS data showing RR-TB, significant differences in the distribution of rpoB RR-conferring mutations between RMR-TB and MDR-TB isolates were observed. Mutations associated with high-level RR were more commonly found among MDR-TB isolates (811/889, 90.2% versus 162/230, 70.4% among RMR-TB, p<0.0001). In particular, the rpoB L430P mutation, conferring low-level RR, was identified in 32/230 (13.9%) RMR-TB versus 10/889 (1.1%) in MDR-TB (p<0.0001). Among 10 isolates with an rpoB L430P mutation, 7 were phenotypically susceptible using the critical concentration of 0.5 μg/ml (range 0.125-1 μg/ml). The majority (215/230, 93.5%) of RMR-TB isolates showed susceptibility to all other TB drugs, highlighting the potential benefits of WGS for simplified treatment. These data suggest that the evolution of RMR-TB differs from MDR-TB with a potential contribution from HIV infection.
Journal Article > ResearchFull Text
Antimicrob Agents Chemother. 2021 October 18; Volume 65 (Issue 11); e0036421.; DOI:10.1128/AAC.00364-21
Salaam-Dreyer Z, Streicher EM, Sirgel FA, Menardo F, Borrell S, et al.
Antimicrob Agents Chemother. 2021 October 18; Volume 65 (Issue 11); e0036421.; DOI:10.1128/AAC.00364-21
Rifampin monoresistance (RMR; rifampin resistance and isoniazid susceptibility) accounts for 38% of all rifampin-resistant tuberculosis (RR-TB) in South Africa and is increasing. We aimed to compare RMR-TB with multidrug-resistant TB (MDR-TB) in a setting with high TB, RR-TB, and HIV burdens. Patient-level clinical data and stored RR Mycobacterium tuberculosis isolates from 2008 to 2017 with available whole-genome sequencing (WGS) data were used to describe risk factors associated with RMR-TB and to compare RR-conferring mutations between RMR-TB and MDR-TB. A subset of isolates with particular RR-conferring mutations were subjected to semiquantitative rifampin phenotypic drug susceptibility testing. Among 2,041 routinely diagnosed RR-TB patients, 463 (22.7%) had RMR-TB. HIV-positive individuals (adjusted odds ratio [aOR], 1.4; 95% confidence interval [CI], 1.1 to 1.9) and diagnosis between 2013 and 2017 versus between 2008 and 2012 (aOR, 1.3; 95% CI, 1.1 to 1.7) were associated with RMR-TB. Among 1,119 (54.8%) patients with available WGS data showing RR-TB, significant differences in the distribution of rpoB RR-conferring mutations between RMR and MDR isolates were observed. Mutations associated with high-level RR were more commonly found among MDR isolates (811/889 [90.2%] versus 162/230 [70.4%] among RMR isolates; P < 0.0001). In particular, the rpoB L430P mutation, conferring low-level RR, was identified in 32/230 (13.9%) RMR isolates versus 10/889 (1.1%) in MDR isolates (P < 0.0001). Among 10 isolates with an rpoB L430P mutation, 7 were phenotypically susceptible using the critical concentration of 0.5 μg/ml (range, 0.125 to 1 μg/ml). The majority (215/230 [93.5%]) of RMR isolates showed susceptibility to all other TB drugs, highlighting the potential benefits of WGS for simplified treatment. These data suggest that the evolution of RMR-TB differs from MDR-TB with a potential contribution from HIV infection.
Journal Article > ResearchFull Text
Lancet Microbe. 2023 June 6; Volume S2666-5247 (Issue 23); 00110-6.; DOI:10.1016/S2666-5247(23)00110-6
Goig GA, Menardo F, Salaam-Dreyer Z, Dippenaar A, Streicher EM, et al.
Lancet Microbe. 2023 June 6; Volume S2666-5247 (Issue 23); 00110-6.; DOI:10.1016/S2666-5247(23)00110-6
BACKGROUND
Experimental data show that drug-resistance-conferring mutations are often associated with a decrease in the replicative fitness of bacteria in vitro, and that this fitness cost can be mitigated by compensatory mutations; however, the role of compensatory evolution in clinical settings is less clear. We assessed whether compensatory evolution was associated with increased transmission of rifampicin-resistant tuberculosis in Khayelitsha, Cape Town, South Africa.
METHODS
We did a genomic epidemiological study by analysing available M tuberculosis isolates and their associated clinical data from individuals routinely diagnosed with rifampicin-resistant tuberculosis in primary care and hospitals in Khayelitsha, Cape Town, South Africa. Isolates were collected as part of a previous study. All individuals diagnosed with rifampicin-resistant tuberculosis and with linked biobanked specimens were included in this study. We applied whole-genome sequencing, Bayesian reconstruction of transmission trees, and phylogenetic multivariable regression analysis to identify individual and bacterial factors associated with the transmission of rifampicin-resistant M tuberculosis strains.
FINDINGS
Between Jan 1, 2008, and Dec 31, 2017, 2161 individuals were diagnosed with multidrug-resistant or rifampicin-resistant tuberculosis in Khayelitsha, Cape Town, South Africa. Whole-genome sequences were available for 1168 (54%) unique individual M tuberculosis isolates. Compensatory evolution was associated with smear-positive pulmonary disease (adjusted odds ratio 1·49, 95% CI 1·08-2·06) and a higher number of drug-resistance-conferring mutations (incidence rate ratio 1·38, 95% CI 1·28-1·48). Compensatory evolution was also associated with increased transmission of rifampicin-resistant disease between individuals (adjusted odds ratio 1·55; 95% CI 1·13-2·12), independent of other patient and bacterial factors.
INTERPRETATION
Our findings suggest that compensatory evolution enhances the in vivo fitness of drug-resistant M tuberculosis genotypes, both within and between patients, and that the in vitro replicative fitness of rifampicin-resistant M tuberculosis measured in the laboratory correlates with the bacterial fitness measured in clinical settings. These results emphasise the importance of enhancing surveillance and monitoring efforts to prevent the emergence of highly transmissible clones capable of rapidly accumulating new drug resistance mutations. This concern becomes especially crucial at present, because treatment regimens incorporating novel drugs are being implemented.
Experimental data show that drug-resistance-conferring mutations are often associated with a decrease in the replicative fitness of bacteria in vitro, and that this fitness cost can be mitigated by compensatory mutations; however, the role of compensatory evolution in clinical settings is less clear. We assessed whether compensatory evolution was associated with increased transmission of rifampicin-resistant tuberculosis in Khayelitsha, Cape Town, South Africa.
METHODS
We did a genomic epidemiological study by analysing available M tuberculosis isolates and their associated clinical data from individuals routinely diagnosed with rifampicin-resistant tuberculosis in primary care and hospitals in Khayelitsha, Cape Town, South Africa. Isolates were collected as part of a previous study. All individuals diagnosed with rifampicin-resistant tuberculosis and with linked biobanked specimens were included in this study. We applied whole-genome sequencing, Bayesian reconstruction of transmission trees, and phylogenetic multivariable regression analysis to identify individual and bacterial factors associated with the transmission of rifampicin-resistant M tuberculosis strains.
FINDINGS
Between Jan 1, 2008, and Dec 31, 2017, 2161 individuals were diagnosed with multidrug-resistant or rifampicin-resistant tuberculosis in Khayelitsha, Cape Town, South Africa. Whole-genome sequences were available for 1168 (54%) unique individual M tuberculosis isolates. Compensatory evolution was associated with smear-positive pulmonary disease (adjusted odds ratio 1·49, 95% CI 1·08-2·06) and a higher number of drug-resistance-conferring mutations (incidence rate ratio 1·38, 95% CI 1·28-1·48). Compensatory evolution was also associated with increased transmission of rifampicin-resistant disease between individuals (adjusted odds ratio 1·55; 95% CI 1·13-2·12), independent of other patient and bacterial factors.
INTERPRETATION
Our findings suggest that compensatory evolution enhances the in vivo fitness of drug-resistant M tuberculosis genotypes, both within and between patients, and that the in vitro replicative fitness of rifampicin-resistant M tuberculosis measured in the laboratory correlates with the bacterial fitness measured in clinical settings. These results emphasise the importance of enhancing surveillance and monitoring efforts to prevent the emergence of highly transmissible clones capable of rapidly accumulating new drug resistance mutations. This concern becomes especially crucial at present, because treatment regimens incorporating novel drugs are being implemented.
Journal Article > ResearchFull Text
PLOS One. 2013 July 30; Volume 8 (Issue 7); e70178.; DOI:10.1371/journal.pone.0070178
Hanekom, Streicher EM, Van de Berg D, Cox HS, McDermid C, et al.
PLOS One. 2013 July 30; Volume 8 (Issue 7); e70178.; DOI:10.1371/journal.pone.0070178
BACKGROUND
Molecular genotyping methods have shown infection with more than one Mycobacterium tuberculosis strain genotype in a single sputum culture, indicating mixed infection.
AIM
This study aimed to develop a PCR-based genotyping tool to determine the population structure of M. tuberculosis strain genotypes in primary Mycobacterial Growth Indicator Tubes (MGIT) and Löwenstein-Jensen (LJ) cultures to identify mixed infections and to establish whether the growth media influenced the recovery of certain strain genotypes.
METHOD
A convenience sample of 206 paired MGIT and LJ M. tuberculosis cultures from pulmonary tuberculosis patients resident in Khayelitsha, South Africa were genotyped using an in-house PCR-based method to detect defined M. tuberculosis strain genotypes.
RESULTS
The sensitivity and specificity of the PCR-based method for detecting Beijing, Haarlem, S-family, and LAM genotypes was 100%, and 75% and 50% for detecting the Low Copy Clade, respectively. Thirty-one (15%) of the 206 cases showed the presence of more than one M. tuberculosis strain genotype. Strains of the Beijing and Haarlem genotypes were significantly more associated with a mixed infection (on both media) when compared to infections with a single strain (Beijing MGIT p = 0.02; LJ, p<0.01) and (Haarlem: MGIT p<0.01; LJ, p = 0.01). Strains with the Beijing genotype were less likely to be with "other genotype" strains (p<0.01) while LAM, Haarlem, S-family and LCC occurred independently with the Beijing genotype.
CONCLUSION
The PCR-based method was able to identify mixed infection in at least 15% of the cases. LJ media was more sensitive in detecting mixed infections than MGIT media, implying that the growth characteristics of M. tuberculosis on different media may influence our ability to detect mixed infections. The Beijing and Haarlem genotypes were more likely to occur in a mixed infection than any of the other genotypes tested suggesting pathogen-pathogen compatibility.
Molecular genotyping methods have shown infection with more than one Mycobacterium tuberculosis strain genotype in a single sputum culture, indicating mixed infection.
AIM
This study aimed to develop a PCR-based genotyping tool to determine the population structure of M. tuberculosis strain genotypes in primary Mycobacterial Growth Indicator Tubes (MGIT) and Löwenstein-Jensen (LJ) cultures to identify mixed infections and to establish whether the growth media influenced the recovery of certain strain genotypes.
METHOD
A convenience sample of 206 paired MGIT and LJ M. tuberculosis cultures from pulmonary tuberculosis patients resident in Khayelitsha, South Africa were genotyped using an in-house PCR-based method to detect defined M. tuberculosis strain genotypes.
RESULTS
The sensitivity and specificity of the PCR-based method for detecting Beijing, Haarlem, S-family, and LAM genotypes was 100%, and 75% and 50% for detecting the Low Copy Clade, respectively. Thirty-one (15%) of the 206 cases showed the presence of more than one M. tuberculosis strain genotype. Strains of the Beijing and Haarlem genotypes were significantly more associated with a mixed infection (on both media) when compared to infections with a single strain (Beijing MGIT p = 0.02; LJ, p<0.01) and (Haarlem: MGIT p<0.01; LJ, p = 0.01). Strains with the Beijing genotype were less likely to be with "other genotype" strains (p<0.01) while LAM, Haarlem, S-family and LCC occurred independently with the Beijing genotype.
CONCLUSION
The PCR-based method was able to identify mixed infection in at least 15% of the cases. LJ media was more sensitive in detecting mixed infections than MGIT media, implying that the growth characteristics of M. tuberculosis on different media may influence our ability to detect mixed infections. The Beijing and Haarlem genotypes were more likely to occur in a mixed infection than any of the other genotypes tested suggesting pathogen-pathogen compatibility.