BACKGROUND
Hydroxychloroquine (HCQ) has proved ineffective in treating patients hospitalised with Coronavirus Disease 2019 (COVID-19), but uncertainty remains over its safety and efficacy in chemoprevention. Previous chemoprevention randomised controlled trials (RCTs) did not individually show benefit of HCQ against COVID-19 and, although meta-analysis did suggest clinical benefit, guidelines recommend against its use.
METHODS AND FINDINGS
Healthy adult participants from the healthcare setting, and later from the community, were enrolled in 26 centres in 11 countries to a double-blind, placebo-controlled, randomised trial of COVID-19 chemoprevention. HCQ was evaluated in Europe and Africa, and chloroquine (CQ) was evaluated in Asia, (both base equivalent of 155 mg once daily). The primary endpoint was symptomatic COVID-19, confirmed by PCR or seroconversion during the 3-month follow-up period. The secondary and tertiary endpoints were: asymptomatic laboratory-confirmed Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection; severity of COVID-19 symptoms; all-cause PCR-confirmed symptomatic acute respiratory illness (including SARS-CoV-2 infection); participant reported number of workdays lost; genetic and baseline biochemical markers associated with symptomatic COVID-19, respiratory illness and disease severity (not reported here); and health economic analyses of HCQ and CQ prophylaxis on costs and quality of life measures (not reported here). The primary and safety analyses were conducted in the intention-to-treat (ITT) population. Recruitment of 40,000 (20,000 HCQ arm, 20,000 CQ arm) participants was planned but was not possible because of protracted delays resulting from controversies over efficacy and adverse events with HCQ use, vaccine rollout in some countries, and other factors. Between 29 April 2020 and 10 March 2022, 4,652 participants (46% females) were enrolled (HCQ/CQ n = 2,320; placebo n = 2,332). The median (IQR) age was 29 (23 to 39) years. SARS-CoV-2 infections (symptomatic and asymptomatic) occurred in 1,071 (23%) participants. For the primary endpoint the incidence of symptomatic COVID-19 was 240/2,320 in the HCQ/CQ versus 284/2,332 in the placebo arms (risk ratio (RR) 0.85 [95% confidence interval, 0.72 to 1.00; p = 0.05]). For the secondary and tertiary outcomes asymptomatic SARS-CoV-2 infections occurred in 11.5% of HCQ/CQ recipients and 12.0% of placebo recipients: RR: 0.96 (95% CI, 0.82 to 1.12; p = 0.6). There were no differences in the severity of symptoms between the groups and no severe illnesses. HCQ/CQ chemoprevention was associated with fewer PCR-confirmed all-cause respiratory infections (predominantly SARS-CoV-2): RR 0.61 (95% CI, 0.42 to 0.88; p = 0.009) and fewer days lost to work because of illness: 104 days per 1,000 participants over 90 days (95% CI, 12 to 199 days; p < 0.001). The prespecified meta-analysis of all published pre-exposure RCTs indicates that HCQ/CQ prophylaxis provided a moderate protective benefit against symptomatic COVID-19: RR 0.80 (95% CI, 0.71 to 0.91). Both drugs were well tolerated with no drug-related serious adverse events (SAEs). Study limitations include the smaller than planned study size, the relatively low number of PCR-confirmed infections, and the lower comparative accuracy of serology endpoints (in particular, the adapted dried blood spot method) compared to the PCR endpoint. The COPCOV trial was registered with ClinicalTrials.gov; number NCT04303507.
INTERPRETATION
In this large placebo-controlled, double-blind randomised trial, HCQ and CQ were safe and well tolerated in COVID-19 chemoprevention, and there was evidence of moderate protective benefit in a meta-analysis including this trial and similar RCTs.
In 2010, WHO recommended the use of new short-course treatment regimens in kala-azar elimination efforts for the Indian subcontinent. Although phase 3 studies have shown excellent results, there remains a lack of evidence on a wider treatment population and the safety and effectiveness of these regimens under field conditions.
METHODS
This was an open label, prospective, non-randomized, non-comparative, multi-centric trial conducted within public health facilities in two highly endemic districts and a specialist referral centre in Bihar, India. Three treatment regimens were tested: single dose AmBisome (SDA), concomitant miltefosine and paromomycin (Milt+PM), and concomitant AmBisome and miltefosine (AmB+Milt). Patients with complicated disease or significant co-morbidities were treated in the SDA arm. Sample sizes were set at a minimum of 300 per arm, taking into account inter-site variation and an estimated failure risk of 5% with 5% precision. Outcomes of drug effectiveness and safety were measured at 6 months. The trial was prospectively registered with the Clinical Trials Registry India: CTRI/2012/08/002891.
RESULTS
Out of 1,761 patients recruited, 50.6% (n = 891) received SDA, 20.3% (n = 358) AmB+Milt and 29.1% (n = 512) Milt+PM. In the ITT analysis, the final cure rates were SDA 91.4% (95% CI 89.3-93.1), AmB+Milt 88.8% (95% CI 85.1-91.9) and Milt+PM 96.9% (95% CI 95.0-98.2). In the complete case analysis, cure rates were SDA 95.5% (95% CI 93.9-96.8), AmB+Milt 95.5% (95% CI 92.7-97.5) and Milt+PM 99.6% (95% CI 98.6-99.9). All three regimens were safe, with 5 severe adverse events in the SDA arm, two of which were considered to be drug related.
CONCLUSION
All regimens showed acceptable outcomes and safety profiles in a range of patients under field conditions. Phase IV field-based studies, although extremely rare for neglected tropical diseases, are good practice and an important step in validating the results of more restrictive hospital-based studies before widespread implementation, and in this case contributed to national level policy change in India.
Bangladesh, India, and Nepal aim for the elimination of Visceral Leishmaniasis (VL), a systemic parasitic infectious disease, as a public health problem by 2020. For decades, male patients have comprised the majority of reported VL cases in this region. By comparing this reported VL sex ratio to the one observed in population-based studies conducted in the Indian subcontinent, we tested the working hypothesis that mainly socio-cultural gender differences in healthcare-seeking behavior explain this gender imbalance.
METHODOLOGY/PRINCIPAL FINDINGS
We compared the observed sex ratio of male versus female among all VL cases reported by the health system in Nepal and in the two most endemic states in India with that observed in population-based cohort studies in India and Nepal. Also, we assessed male sex as a potential risk factor for seroprevalence at baseline, seroconversion, and VL incidence in the same population-based data. The male/female ratio among VL cases reported by the health systems was 1.40 (95% CI 1.37-1.43). In the population cohort data, the age- and study site-adjusted male to female risk ratio was 1.27 (95% CI 1.08-1.51). Also, males had a 19% higher chance of being seropositive at baseline in the population surveys (RR 1.19; 95% CI 1.11-1.27), while we observed no significant difference in seroconversion rate between both sexes at the DAT cut-off titer defined as the primary endpoint.
CONCLUSIONS/SIGNIFICANCE
Our population-based data show that male sex is a risk factor for VL, and not only as a socio-cultural determinant. Biological sex-related differences likely play an important role in the pathogenesis of this disease.
An earlier open label, prospective, non-randomized, non-comparative, multi-centric study conducted within public health facilities in Bihar, India (CTRI/2012/08/002891) measured the field effectiveness of three new treatment regimens for visceral leishmaniasis (VL): single dose AmBisome (SDA), and combination therapies of AmBisome and miltefosine (AmB+Milt) and miltefosine and paromomycin (Milt+PM) up to 6 months follow-up. The National Vector Borne Disease Control Program (NVBDCP) recommended an extended follow up at 12 months post-treatment of the original study cohort to quantify late relapses.
METHODS:
The 1,761 patients enrolled in the original study with the three new regimens were contacted and traced between 10 and 36 months following completion of treatment to determine their health status and any occurrence of VL relapse.
RESULTS:
Of 1,761 patients enrolled in the original study, 1,368 were traced at the extended follow-up visit: 711 (80.5%), 295 (83.2%) and 362 (71.5%) patients treated with SDA, AmB+Milt and Milt+PM respectively. Of those traced, a total of 75 patients were reported to have relapsed by the extended follow-up; 45 (6.3%) in the SDA, 25 (8.5%) in the AmB+Milt and 5 (1.4%) in the Milt+PM arms. Of the 75 relapse cases, 55 had already been identified in the 6-months follow-up and 20 were identified as new cases of relapse at extended follow-up; 7 in the SDA, 10 in the AmB+Milt and 3 in the Milt+PM arms.
CONCLUSION:
Extending follow-up beyond the standard 6 months identified additional relapses, suggesting that 12-month sentinel follow-up may be useful as a programmatic tool to better identify and quantify relapses. With limited drug options, there remains an urgent need to develop effective new chemical entities (NCEs) for VL.
In Southeast Asia, treatment is recommended for all patients with post-kala-azar dermal leishmaniasis (PKDL). Adherence to the first-line regimen, twelve weeks of miltefosine (MF), is low and ocular toxicity has been observed with this exposure period. We assessed the safety and efficacy of two shorter-course treatments: liposomal amphotericin B (LAmB) alone and combined with MF.
METHODOLOGY/PRINCIPAL FINDINGS
An open-label, phase II, randomized, parallel-arm, non-comparative trial was conducted in patients with parasitologically confirmed PKDL, 6 to ≤60 years. Patients were assigned to 20 mg/kg LAmB (total dose, in five injections over 15 days) alone or combined with allometric MF (3 weeks). The primary endpoint was definitive cure at 12 months, defined as complete resolution of papular and nodular lesions and >80% re-pigmentation of macular lesions. Definitive cure at 24 months was a secondary efficacy endpoint. 118/126 patients completed the trial. Definitive cure at 12 months was observed in 29% (18/63) patients receiving LAmB and 30% (19/63) receiving LAmB/MF (mITT), increasing to 58% and 66%, respectively, at 24 months. Most lesions had resolved/improved at 12 and 24 months for patients receiving LAmB (90%, 83%) and LAmB/MF (85%, 88%) by qualitative assessment. One death, unrelated to study drugs, was reported; no study drug-related serious adverse events were observed. The most frequent adverse drug reactions were MF-related vomiting and nausea, and LAmB-related hypokalaemia and infusion reactions. Most adverse events were mild; no ocular adverse events occurred.
CONCLUSIONS/SIGNIFICANCE
Both regimens are suitably safe and efficacious alternatives to long-course MF for PKDL in South Asia.