Conference Material > Abstract
Chandna A, PRIORITISE Study Group, Mahajan R, Gautam P, Mwandigha L, et al.
MSF Scientific Days International 2022. 2022 May 9; DOI:10.57740/hxy9-yk07
INTRODUCTION
In locations where few people have received Covid-19 vaccines, health systems remain vulnerable to spikes in SARS-CoV-2 infections. Triage tools, which could include biomarkers, to identify patients with moderate Covid-19 infection suitable for community-based management would be useful in the event of surges. In consultation with FIND (Geneva, Switzerland) we shortlisted seven biomarkers for evaluation, all measurable using point-of-care tests, and either currently available or in late-stage development.
METHODS
We prospectively recruited unvaccinated adults with laboratory-confirmed Covid-19 presenting to two hospitals in India with moderate symptoms, in order to develop and validate a clinical prediction model to rule-out progression to supplemental oxygen requirement. Moderate disease was defined as oxygen saturation (SpO2) ≥ 94% and respiratory rate < 30 breaths per minute (bpm), in the context of systemic symptoms (breathlessness or fever and chest pain, abdominal pain, diarrhoea, or severe myalgia). All patients had clinical observations and blood collected at presentation, and were followed up for 14 days for the primary outcome, defined as any of the following: SpO2 < 94%; respiratory rate > 30 bpm; SpO2/fraction of inspired oxygen (FiO2) < 400; or death. We specified a priori that each model would contain three easily ascertained clinical parameters (age, sex, and SpO2) and one of the seven biomarkers (C-reactive protein (CRP), D-dimer, interleukin-6 (IL-6), neutrophil-to-lymphocyte ratio (NLR), procalcitonin (PCT), soluble triggering receptor expressed on myeloid cells-1 (sTREM-1), or soluble urokinase plasminogen activator receptor (suPAR)), to ensure the models would be implementable in high patient-throughput, low-resource settings. We evaluated the models’ discrimination, calibration, and clinical utility in a held-out external temporal validation cohort.
ETHICS
Ethical approval was given by the ethics committees of AIIMS and CMC, India, the Oxford Tropical Research Ethics Committee, UK; and by the MSF Ethics Review Board.
ClinicalTrials.gov number, NCT04441372.
RESULTS
426 participants were recruited, of which 89 (21.0%) met the primary outcome. 257 participants comprised the development, and 166 the validation, cohorts. The three models containing NLR, suPAR, or IL-6 demonstrated promising discrimination (c-statistics: 0.72 to 0.74) and calibration (calibration slopes: 1.01 to 1.05) in the held-out validation cohort. Furthermore, they provided greater utility than a model containing the clinical parameters alone (c-statistic = 0.66; calibration slope = 0.68). The inclusion of either NLR or suPAR improved predictive performance such that the ratio of correctly to incorrectly discharged patients increased from 10:1 to 23:1 or 25:1 respectively. Including IL-6 resulted in a similar proportion (~21%) of correctly discharged patients as the clinical model, but without missing any patients requiring supplemental oxygen.
CONCLUSION
We present three clinical prediction models that could help clinicians identify patients with moderate Covid-19 suitable for community-based management. These models are readily implementable and, if validated, could be of particular relevance for resource-limited settings.
CONFLICTS OF INTEREST
None declared.
In locations where few people have received Covid-19 vaccines, health systems remain vulnerable to spikes in SARS-CoV-2 infections. Triage tools, which could include biomarkers, to identify patients with moderate Covid-19 infection suitable for community-based management would be useful in the event of surges. In consultation with FIND (Geneva, Switzerland) we shortlisted seven biomarkers for evaluation, all measurable using point-of-care tests, and either currently available or in late-stage development.
METHODS
We prospectively recruited unvaccinated adults with laboratory-confirmed Covid-19 presenting to two hospitals in India with moderate symptoms, in order to develop and validate a clinical prediction model to rule-out progression to supplemental oxygen requirement. Moderate disease was defined as oxygen saturation (SpO2) ≥ 94% and respiratory rate < 30 breaths per minute (bpm), in the context of systemic symptoms (breathlessness or fever and chest pain, abdominal pain, diarrhoea, or severe myalgia). All patients had clinical observations and blood collected at presentation, and were followed up for 14 days for the primary outcome, defined as any of the following: SpO2 < 94%; respiratory rate > 30 bpm; SpO2/fraction of inspired oxygen (FiO2) < 400; or death. We specified a priori that each model would contain three easily ascertained clinical parameters (age, sex, and SpO2) and one of the seven biomarkers (C-reactive protein (CRP), D-dimer, interleukin-6 (IL-6), neutrophil-to-lymphocyte ratio (NLR), procalcitonin (PCT), soluble triggering receptor expressed on myeloid cells-1 (sTREM-1), or soluble urokinase plasminogen activator receptor (suPAR)), to ensure the models would be implementable in high patient-throughput, low-resource settings. We evaluated the models’ discrimination, calibration, and clinical utility in a held-out external temporal validation cohort.
ETHICS
Ethical approval was given by the ethics committees of AIIMS and CMC, India, the Oxford Tropical Research Ethics Committee, UK; and by the MSF Ethics Review Board.
ClinicalTrials.gov number, NCT04441372.
RESULTS
426 participants were recruited, of which 89 (21.0%) met the primary outcome. 257 participants comprised the development, and 166 the validation, cohorts. The three models containing NLR, suPAR, or IL-6 demonstrated promising discrimination (c-statistics: 0.72 to 0.74) and calibration (calibration slopes: 1.01 to 1.05) in the held-out validation cohort. Furthermore, they provided greater utility than a model containing the clinical parameters alone (c-statistic = 0.66; calibration slope = 0.68). The inclusion of either NLR or suPAR improved predictive performance such that the ratio of correctly to incorrectly discharged patients increased from 10:1 to 23:1 or 25:1 respectively. Including IL-6 resulted in a similar proportion (~21%) of correctly discharged patients as the clinical model, but without missing any patients requiring supplemental oxygen.
CONCLUSION
We present three clinical prediction models that could help clinicians identify patients with moderate Covid-19 suitable for community-based management. These models are readily implementable and, if validated, could be of particular relevance for resource-limited settings.
CONFLICTS OF INTEREST
None declared.
Journal Article > ResearchFull Text
Malar J. 2013 October 11; Volume 12 (Issue 1); 363.; DOI:10.1186/1475-2875-12-363
Smithuis FM, Kyaw MK, van der Broek I, Katterman N, Rogers C, et al.
Malar J. 2013 October 11; Volume 12 (Issue 1); 363.; DOI:10.1186/1475-2875-12-363
BACKGROUND
Insecticide-treated bed nets (ITN) reduce malaria morbidity and mortality consistently in Africa, but their benefits have been less consistent in Asia. This study's objective was to evaluate the malaria protective efficacy of village-wide usage of ITN in Western Myanmar and estimate the cost-effectiveness of ITN compared with extending early diagnosis and treatment services.
METHODS
A cluster-randomized controlled trial was conducted in Rakhine State to assess the efficacy of ITNs in preventing malaria and anaemia in children and their secondary effects on nutrition and development. The data were aggregated for each village to obtain cluster-level infection rates. In total 8,175 children under 10 years of age were followed up for 10 months, which included the main malaria transmission period. The incidence and prevalence of Plasmodium falciparum and Plasmodium vivax infections, and the biting behaviour of Anopheles mosquitoes in the area were studied concurrently. The trial data along with costs for current recommended treatment practices were modelled to estimate the cost-effectiveness of ITNs compared with, or in addition to extending the coverage of early diagnosis and treatment services.
RESULTS
In aggregate, malaria infections, spleen rates, haemoglobin concentrations, and weight for height, did not differ significantly during the study period between villages with and without ITNs, with a weighted mean difference of -2.6 P. falciparum episodes per 1,000 weeks at risk (95% Confidence Interval -7 to 1.8). In areas with a higher incidence of malaria there was some evidence ITN protective efficacy. The economic analysis indicated that, despite the uncertainty and variability in their protective efficacy in the different study sites, ITN could still be cost-effective, but not if they displaced funding for early diagnosis and effective treatment which is substantially more cost-effective.
CONCLUSION
In Western Myanmar deployment of ITNs did not provide consistent protection against malaria in children living in malaria endemic villages. Early diagnosis and effective treatment is a more cost effective malaria control strategy than deployment of ITNs in this area where the main vector bites early in the evening, often before people are protected by an ITN.
Insecticide-treated bed nets (ITN) reduce malaria morbidity and mortality consistently in Africa, but their benefits have been less consistent in Asia. This study's objective was to evaluate the malaria protective efficacy of village-wide usage of ITN in Western Myanmar and estimate the cost-effectiveness of ITN compared with extending early diagnosis and treatment services.
METHODS
A cluster-randomized controlled trial was conducted in Rakhine State to assess the efficacy of ITNs in preventing malaria and anaemia in children and their secondary effects on nutrition and development. The data were aggregated for each village to obtain cluster-level infection rates. In total 8,175 children under 10 years of age were followed up for 10 months, which included the main malaria transmission period. The incidence and prevalence of Plasmodium falciparum and Plasmodium vivax infections, and the biting behaviour of Anopheles mosquitoes in the area were studied concurrently. The trial data along with costs for current recommended treatment practices were modelled to estimate the cost-effectiveness of ITNs compared with, or in addition to extending the coverage of early diagnosis and treatment services.
RESULTS
In aggregate, malaria infections, spleen rates, haemoglobin concentrations, and weight for height, did not differ significantly during the study period between villages with and without ITNs, with a weighted mean difference of -2.6 P. falciparum episodes per 1,000 weeks at risk (95% Confidence Interval -7 to 1.8). In areas with a higher incidence of malaria there was some evidence ITN protective efficacy. The economic analysis indicated that, despite the uncertainty and variability in their protective efficacy in the different study sites, ITN could still be cost-effective, but not if they displaced funding for early diagnosis and effective treatment which is substantially more cost-effective.
CONCLUSION
In Western Myanmar deployment of ITNs did not provide consistent protection against malaria in children living in malaria endemic villages. Early diagnosis and effective treatment is a more cost effective malaria control strategy than deployment of ITNs in this area where the main vector bites early in the evening, often before people are protected by an ITN.
Journal Article > ResearchFull Text
Clin Infect Dis. 2022 March 21; Volume ciac224; DOI:10.1093/cid/ciac224
Chandna A, Mahajan R, Gautam P, Mwandigha L, Gunasekaran K, et al.
Clin Infect Dis. 2022 March 21; Volume ciac224; DOI:10.1093/cid/ciac224
BACKGROUND
In locations where few people have received COVID-19 vaccines, health systems remain vulnerable to surges in SARS-CoV-2 infections. Tools to identify patients suitable for community-based management are urgently needed.
METHODS
We prospectively recruited adults presenting to two hospitals in India with moderate symptoms of laboratory-confirmed COVID-19 in order to develop and validate a clinical prediction model to rule-out progression to supplemental oxygen requirement. The primary outcome was defined as any of the following: SpO2 < 94%; respiratory rate > 30 bpm; SpO2/FiO2 < 400; or death. We specified a priori that each model would contain three clinical parameters (age, sex and SpO2) and one of seven shortlisted biochemical biomarkers measurable using commercially-available rapid tests (CRP, D-dimer, IL-6, NLR, PCT, sTREM-1 or suPAR), to ensure the models would be suitable for resource-limited settings. We evaluated discrimination, calibration and clinical utility of the models in a held-out temporal external validation cohort.
RESULTS
426 participants were recruited, of whom 89 (21.0%) met the primary outcome. 257 participants comprised the development cohort and 166 comprised the validation cohort. The three models containing NLR, suPAR or IL-6 demonstrated promising discrimination (c-statistics: 0.72 to 0.74) and calibration (calibration slopes: 1.01 to 1.05) in the validation cohort, and provided greater utility than a model containing the clinical parameters alone.
CONCLUSIONS
We present three clinical prediction models that could help clinicians identify patients with moderate COVID-19 suitable for community-based management. The models are readily implementable and of particular relevance for locations with limited resources.
In locations where few people have received COVID-19 vaccines, health systems remain vulnerable to surges in SARS-CoV-2 infections. Tools to identify patients suitable for community-based management are urgently needed.
METHODS
We prospectively recruited adults presenting to two hospitals in India with moderate symptoms of laboratory-confirmed COVID-19 in order to develop and validate a clinical prediction model to rule-out progression to supplemental oxygen requirement. The primary outcome was defined as any of the following: SpO2 < 94%; respiratory rate > 30 bpm; SpO2/FiO2 < 400; or death. We specified a priori that each model would contain three clinical parameters (age, sex and SpO2) and one of seven shortlisted biochemical biomarkers measurable using commercially-available rapid tests (CRP, D-dimer, IL-6, NLR, PCT, sTREM-1 or suPAR), to ensure the models would be suitable for resource-limited settings. We evaluated discrimination, calibration and clinical utility of the models in a held-out temporal external validation cohort.
RESULTS
426 participants were recruited, of whom 89 (21.0%) met the primary outcome. 257 participants comprised the development cohort and 166 comprised the validation cohort. The three models containing NLR, suPAR or IL-6 demonstrated promising discrimination (c-statistics: 0.72 to 0.74) and calibration (calibration slopes: 1.01 to 1.05) in the validation cohort, and provided greater utility than a model containing the clinical parameters alone.
CONCLUSIONS
We present three clinical prediction models that could help clinicians identify patients with moderate COVID-19 suitable for community-based management. The models are readily implementable and of particular relevance for locations with limited resources.
Protocol > Research Study
BMJ Open. 2021 January 25; Volume 11 (Issue 1); e045826.; DOI:10.1136/bmjopen-2020-045826
Chandna A, Aderie EM, Ahmad R, Arguni E, Ashley EA, et al.
BMJ Open. 2021 January 25; Volume 11 (Issue 1); e045826.; DOI:10.1136/bmjopen-2020-045826
INTRODUCTION
In rural and difficult-to-access settings, early and accurate recognition of febrile children at risk of progressing to serious illness could contribute to improved patient outcomes and better resource allocation. This study aims to develop a prognostic clinical prediction tool to assist community healthcare providers identify febrile children who might benefit from referral or admission for facility-based medical care.
METHODS AND ANALYSIS
This prospective observational study will recruit at least 4900 paediatric inpatients and outpatients under the age of 5 years presenting with an acute febrile illness to seven hospitals in six countries across Asia. A venous blood sample and nasopharyngeal swab is collected from each participant and detailed clinical data recorded at presentation, and each day for the first 48 hours of admission for inpatients. Multianalyte assays are performed at reference laboratories to measure a panel of host biomarkers, as well as targeted aetiological investigations for common bacterial and viral pathogens. Clinical outcome is ascertained on day 2 and day 28.Presenting syndromes, clinical outcomes and aetiology of acute febrile illness will be described and compared across sites. Following the latest guidance in prediction model building, a prognostic clinical prediction model, combining simple clinical features and measurements of host biomarkers, will be derived and geographically externally validated. The performance of the model will be evaluated in specific presenting clinical syndromes and fever aetiologies.
ETHICS AND DISSEMINATION
The study has received approval from all relevant international, national and institutional ethics committees. Written informed consent is provided by the caretaker of all participants. Results will be shared with local and national stakeholders, and disseminated via peer-reviewed open-access journals and scientific meetings.
TRIAL REGISTRATION NUMBER NCT04285021.
In rural and difficult-to-access settings, early and accurate recognition of febrile children at risk of progressing to serious illness could contribute to improved patient outcomes and better resource allocation. This study aims to develop a prognostic clinical prediction tool to assist community healthcare providers identify febrile children who might benefit from referral or admission for facility-based medical care.
METHODS AND ANALYSIS
This prospective observational study will recruit at least 4900 paediatric inpatients and outpatients under the age of 5 years presenting with an acute febrile illness to seven hospitals in six countries across Asia. A venous blood sample and nasopharyngeal swab is collected from each participant and detailed clinical data recorded at presentation, and each day for the first 48 hours of admission for inpatients. Multianalyte assays are performed at reference laboratories to measure a panel of host biomarkers, as well as targeted aetiological investigations for common bacterial and viral pathogens. Clinical outcome is ascertained on day 2 and day 28.Presenting syndromes, clinical outcomes and aetiology of acute febrile illness will be described and compared across sites. Following the latest guidance in prediction model building, a prognostic clinical prediction model, combining simple clinical features and measurements of host biomarkers, will be derived and geographically externally validated. The performance of the model will be evaluated in specific presenting clinical syndromes and fever aetiologies.
ETHICS AND DISSEMINATION
The study has received approval from all relevant international, national and institutional ethics committees. Written informed consent is provided by the caretaker of all participants. Results will be shared with local and national stakeholders, and disseminated via peer-reviewed open-access journals and scientific meetings.
TRIAL REGISTRATION NUMBER NCT04285021.
Journal Article > ResearchFull Text
PLOS One. 2016 August 25; Volume 11 (Issue 8); DOI:10.1371/journal.pone.0161721
Dittrich S, Tadesse BT, Moussy FG, Chua AC, Zorzet A, et al.
PLOS One. 2016 August 25; Volume 11 (Issue 8); DOI:10.1371/journal.pone.0161721
Acute fever is one of the most common presenting symptoms globally. In order to reduce the empiric use of antimicrobial drugs and improve outcomes, it is essential to improve diagnostic capabilities. In the absence of microbiology facilities in low-income settings, an assay to distinguish bacterial from non-bacterial causes would be a critical first step. To ensure that patient and market needs are met, the requirements of such a test should be specified in a target product profile (TPP). To identify minimal/optimal characteristics for a bacterial vs. non-bacterial fever test, experts from academia and international organizations with expertise in infectious diseases, diagnostic test development, laboratory medicine, global health, and health economics were convened. Proposed TPPs were reviewed by this working group, and consensus characteristics were defined. The working group defined non-severely ill, non-malaria infected children as the target population for the desired assay. To provide access to the most patients, the test should be deployable to community health centers and informal health settings, and staff should require <2 days of training to perform the assay. Further, given that the aim is to reduce inappropriate antimicrobial use as well as to deliver appropriate treatment for patients with bacterial infections, the group agreed on minimal diagnostic performance requirements of >90% and >80% for sensitivity and specificity, respectively. Other key characteristics, to account for the challenging environment at which the test is targeted, included: i) time-to-result <10 min (but maximally <2 hrs); ii) storage conditions at 0-40°C, ≤90% non-condensing humidity with a minimal shelf life of 12 months; iii) operational conditions of 5-40°C, ≤90% non-condensing humidity; and iv) minimal sample collection needs (50-100μL, capillary blood). This expert approach to define assay requirements for a bacterial vs. non-bacterial assay should guide product development, and enable targeted and timely efforts by industry partners and academic institutions.
Journal Article > ResearchFull Text
PLOS Glob Public Health. 2023 August 21; Volume 3 (Issue 8); e0001538.; DOI:10.1371/journal.pgph.0001538
Chandna A, Mahajan R, Gautam P, Mwandigha L, Dittrich S, et al.
PLOS Glob Public Health. 2023 August 21; Volume 3 (Issue 8); e0001538.; DOI:10.1371/journal.pgph.0001538
The soluble urokinase plasminogen activator receptor (suPAR) has been proposed as a biomarker for risk stratification of patients presenting with acute infections. However, most studies evaluating suPAR have used platform-based assays, the accuracy of which may differ from point-of-care tests capable of informing timely triage in settings without established laboratory capacity. Using samples and data collected during a prospective cohort study of 425 patients presenting with moderate Covid-19 to two hospitals in India, we evaluated the analytical performance and prognostic accuracy of a commercially-available rapid diagnostic test (RDT) for suPAR, using an enzyme-linked immunosorbent assay (ELISA) as the reference standard. Our hypothesis was that the suPAR RDT might be useful for triage of patients presenting with moderate Covid-19 irrespective of its analytical performance when compared with the reference test. Although agreement between the two tests was limited (bias = -2.46 ng/mL [95% CI = -2.65 to -2.27 ng/mL]), prognostic accuracy to predict supplemental oxygen requirement was comparable, whether suPAR was used alone (area under the receiver operating characteristic curve [AUC] of RDT = 0.73 [95% CI = 0.68 to 0.79] vs. AUC of ELISA = 0.70 [95% CI = 0.63 to 0.76]; p = 0.12) or as part of a published multivariable prediction model (AUC of RDT-based model = 0.74 [95% CI = 0.66 to 0.83] vs. AUC of ELISA-based model = 0.72 [95% CI = 0.64 to 0.81]; p = 0.78). Lack of agreement between the RDT and ELISA in our cohort warrants further investigation and highlights the importance of assessing candidate point-of-care tests to ensure management algorithms reflect the assay that will ultimately be used to inform patient care. Availability of a quantitative point-of-care test for suPAR opens the door to suPAR-guided risk stratification of patients with Covid-19 and other acute infections in settings with limited laboratory capacity.
Journal Article > ResearchFull Text
Am J Trop Med Hyg. 2022 April 18; Volume Online version ahead of print; 1-5.; DOI:10.4269/ajtmh.21-1045
Chandna A, Richard-Greenblatt M, Tustin R, Lee SJ, Kain KC, et al.
Am J Trop Med Hyg. 2022 April 18; Volume Online version ahead of print; 1-5.; DOI:10.4269/ajtmh.21-1045
Host biomarker testing can be used as an adjunct to the clinical assessment of patients with infections and might be particularly impactful in resource-constrained settings. Research on the merits of this approach at peripheral levels of low- and middle-income country health systems is limited. In part, this is due to resource-intense requirements for sample collection, processing, and storage. We evaluated the stability of 16 endothelial and immune activation biomarkers implicated in the host response to infection stored in venous plasma and dried blood spot specimens at different temperatures for 6 months. We found that –80°C storage offered no clear advantage over –20°C for plasma aliquots, and most biomarkers studied could safely be stored as dried blood spots at refrigeration temperatures (4°C) for up to 3 months. These results identify more practical methods for host biomarker testing in resource-limited environments, which could help facilitate research in rural and remote environments.