Journal Article > Meta-AnalysisFull Text
E Clinical Medicine. 2023 February 1; Volume 56; 101815.; DOI:10.1016/j.eclinm.2022.101815
Hamada Y, Gupta RS, Quartagno M, Izzard A, Acuna-Villaorduna C, et al.
E Clinical Medicine. 2023 February 1; Volume 56; 101815.; DOI:10.1016/j.eclinm.2022.101815
BACKGROUND
Evidence on the comparative performance of purified protein derivative tuberculin skin tests (TST) and interferon-gamma release assays (IGRA) for predicting incident active tuberculosis (TB) remains conflicting. We conducted an individual participant data meta-analysis to directly compare the predictive performance for incident TB disease between TST and IGRA to inform policy.
METHODS
We searched Medline and Embase from 1 January 2002 to 4 September 2020, and studies that were included in previous systematic reviews. We included prospective longitudinal studies in which participants received both TST and IGRA and estimated performance as hazard ratios (HR) for the development of all diagnoses of TB in participants with dichotomised positive test results compared to negative results, using different thresholds of positivity for TST. Secondary analyses included an evaluation of the impact of background TB incidence. We also estimated the sensitivity and specificity for predicting TB. We explored heterogeneity through pre-defined sub-group analyses (e.g. country-level TB incidence). Publication bias was assessed using funnel plots and Egger's test. This review is registered with PROSPERO, CRD42020205667.
FINDINGS
We obtained data from 13 studies out of 40 that were considered eligible (N = 32,034 participants: 36% from countries with TB incidence rate ≥100 per 100,000 population). All reported data on TST and QuantiFERON Gold in-Tube (QFT-GIT). The point estimate for the TST was highest with higher cut-offs for positivity and particularly when stratified by bacillus Calmette–Guérin vaccine (BCG) status (15 mm if BCG vaccinated and 5 mm if not [TST5/15 mm]) at 2.88 (95% CI 1.69–4.90). The pooled HR for QFT-GIT was higher than for TST at 4.15 (95% CI 1.97–8.75). The difference was large in countries with TB incidence rate <100 per 100,000 population (HR 10.38, 95% CI 4.17–25.87 for QFT-GIT VS. HR 5.36, 95% CI 3.82–7.51 for TST5/15 mm) but much of this difference was driven by a single study (HR 5.13, 95% CI 3.58–7.35 for TST5/15 mm VS. 7.18, 95% CI 4.48–11.51 for QFT-GIT, when excluding the study, in which all 19 TB cases had positive QFT-GIT results). The comparative performance was similar in the higher burden countries (HR 1.61, 95% CI 1.23–2.10 for QFT-GIT VS. HR 1.72, 95% CI 0.98–3.01 for TST5/15 mm). The predictive performance of both tests was higher in countries with TB incidence rate <100 per 100,000 population. In the lower TB incidence countries, the specificity of TST (76% for TST5/15 mm) and QFT-GIT (74%) for predicting active TB approached the minimum World Health Organization target (≥75%), but the sensitivity was below the target of ≥75% (63% for TST5/15 mm and 65% for QFT-GIT). The absolute differences in positive and negative predictive values between TST15 mm and QFT-GIT were small (positive predictive values 2.74% VS. 2.46%; negative predictive values 99.42% VS. 99.52% in low-incidence countries). Egger's test did not show evidence of publication bias (0.74 for TST15 mm and p = 0.68 for QFT-GIT).
INTERPRETATION
IGRA appears to have higher predictive performance than the TST in low TB incidence countries, but the difference was driven by a single study. Any advantage in clinical performance may be small, given the numerically similar positive and negative predictive values. Both IGRA and TST had lower performance in countries with high TB incidence. Test choice should be contextual and made considering operational and likely clinical impact of test results.
Evidence on the comparative performance of purified protein derivative tuberculin skin tests (TST) and interferon-gamma release assays (IGRA) for predicting incident active tuberculosis (TB) remains conflicting. We conducted an individual participant data meta-analysis to directly compare the predictive performance for incident TB disease between TST and IGRA to inform policy.
METHODS
We searched Medline and Embase from 1 January 2002 to 4 September 2020, and studies that were included in previous systematic reviews. We included prospective longitudinal studies in which participants received both TST and IGRA and estimated performance as hazard ratios (HR) for the development of all diagnoses of TB in participants with dichotomised positive test results compared to negative results, using different thresholds of positivity for TST. Secondary analyses included an evaluation of the impact of background TB incidence. We also estimated the sensitivity and specificity for predicting TB. We explored heterogeneity through pre-defined sub-group analyses (e.g. country-level TB incidence). Publication bias was assessed using funnel plots and Egger's test. This review is registered with PROSPERO, CRD42020205667.
FINDINGS
We obtained data from 13 studies out of 40 that were considered eligible (N = 32,034 participants: 36% from countries with TB incidence rate ≥100 per 100,000 population). All reported data on TST and QuantiFERON Gold in-Tube (QFT-GIT). The point estimate for the TST was highest with higher cut-offs for positivity and particularly when stratified by bacillus Calmette–Guérin vaccine (BCG) status (15 mm if BCG vaccinated and 5 mm if not [TST5/15 mm]) at 2.88 (95% CI 1.69–4.90). The pooled HR for QFT-GIT was higher than for TST at 4.15 (95% CI 1.97–8.75). The difference was large in countries with TB incidence rate <100 per 100,000 population (HR 10.38, 95% CI 4.17–25.87 for QFT-GIT VS. HR 5.36, 95% CI 3.82–7.51 for TST5/15 mm) but much of this difference was driven by a single study (HR 5.13, 95% CI 3.58–7.35 for TST5/15 mm VS. 7.18, 95% CI 4.48–11.51 for QFT-GIT, when excluding the study, in which all 19 TB cases had positive QFT-GIT results). The comparative performance was similar in the higher burden countries (HR 1.61, 95% CI 1.23–2.10 for QFT-GIT VS. HR 1.72, 95% CI 0.98–3.01 for TST5/15 mm). The predictive performance of both tests was higher in countries with TB incidence rate <100 per 100,000 population. In the lower TB incidence countries, the specificity of TST (76% for TST5/15 mm) and QFT-GIT (74%) for predicting active TB approached the minimum World Health Organization target (≥75%), but the sensitivity was below the target of ≥75% (63% for TST5/15 mm and 65% for QFT-GIT). The absolute differences in positive and negative predictive values between TST15 mm and QFT-GIT were small (positive predictive values 2.74% VS. 2.46%; negative predictive values 99.42% VS. 99.52% in low-incidence countries). Egger's test did not show evidence of publication bias (0.74 for TST15 mm and p = 0.68 for QFT-GIT).
INTERPRETATION
IGRA appears to have higher predictive performance than the TST in low TB incidence countries, but the difference was driven by a single study. Any advantage in clinical performance may be small, given the numerically similar positive and negative predictive values. Both IGRA and TST had lower performance in countries with high TB incidence. Test choice should be contextual and made considering operational and likely clinical impact of test results.
Journal Article > ResearchFull Text
Int J Tuberc Lung Dis. 2022 March 1; Volume 26 (Issue 3); 190-205.; DOI:10.5588/ijtld.21.0753
Migliori GB, Wu SJ, Matteelli A, Zenner D, Goletti D, et al.
Int J Tuberc Lung Dis. 2022 March 1; Volume 26 (Issue 3); 190-205.; DOI:10.5588/ijtld.21.0753
BACKGROUND
Tuberculosis (TB) preventive therapy (TPT) decreases the risk of developing TB disease and its associated morbidity and mortality. The aim of these clinical standards is to guide the assessment, management of TB infection (TBI) and implementation of TPT.
METHODS
A panel of global experts in the field of TB care was identified; 41 participated in a Delphi process. A 5-point Likert scale was used to score the initial standards. After rounds of revision, the document was approved with 100% agreement.
RESULTS
Eight clinical standards were defined: Standard 1, all individuals belonging to at-risk groups for TB should undergo testing for TBI; Standard 2, all individual candidates for TPT (including caregivers of children) should undergo a counselling/health education session; Standard 3, testing for TBI: timing and test of choice should be optimised; Standard 4, TB disease should be excluded prior to initiation of TPT; Standard 5, all candidates for TPT should undergo a set of baseline examinations; Standard 6, all individuals initiating TPT should receive one of the recommended regimens; Standard 7, all individuals who have started TPT should be monitored; Standard 8, a TBI screening and testing register should be kept to inform the cascade of care.
CONCLUSION
This is the first consensus-based set of Clinical Standards for TBI. This document guides clinicians, programme managers and public health officers in planning and implementing adequate measures to assess and manage TBI.
Tuberculosis (TB) preventive therapy (TPT) decreases the risk of developing TB disease and its associated morbidity and mortality. The aim of these clinical standards is to guide the assessment, management of TB infection (TBI) and implementation of TPT.
METHODS
A panel of global experts in the field of TB care was identified; 41 participated in a Delphi process. A 5-point Likert scale was used to score the initial standards. After rounds of revision, the document was approved with 100% agreement.
RESULTS
Eight clinical standards were defined: Standard 1, all individuals belonging to at-risk groups for TB should undergo testing for TBI; Standard 2, all individual candidates for TPT (including caregivers of children) should undergo a counselling/health education session; Standard 3, testing for TBI: timing and test of choice should be optimised; Standard 4, TB disease should be excluded prior to initiation of TPT; Standard 5, all candidates for TPT should undergo a set of baseline examinations; Standard 6, all individuals initiating TPT should receive one of the recommended regimens; Standard 7, all individuals who have started TPT should be monitored; Standard 8, a TBI screening and testing register should be kept to inform the cascade of care.
CONCLUSION
This is the first consensus-based set of Clinical Standards for TBI. This document guides clinicians, programme managers and public health officers in planning and implementing adequate measures to assess and manage TBI.
Journal Article > Meta-AnalysisFull Text
Lancet HIV. 2022 April 1; Volume S2352-3018 (Issue 22); 00002-9.; DOI:10.1016/S2352-3018(22)00002-9
Dhana A, Hamada Y, Kengne AP, Kerkhoff AD, Rangaka MX, et al.
Lancet HIV. 2022 April 1; Volume S2352-3018 (Issue 22); 00002-9.; DOI:10.1016/S2352-3018(22)00002-9
BACKGROUND
Since 2011, WHO has recommended that HIV-positive inpatients be routinely screened for tuberculosis with the WHO four-symptom screen (W4SS) and, if screened positive, receive a molecular WHO-recommended rapid diagnostic test (eg, Xpert MTB/RIF [Xpert] assay). To inform updated WHO tuberculosis screening guidelines, we conducted a systematic review and individual participant data meta-analysis to assess the performance of W4SS and alternative screening tests to guide Xpert testing and compare the diagnostic accuracy of the WHO Xpert algorithm (ie, W4SS followed by Xpert) with Xpert for all HIV-positive inpatients.
METHODS
We searched MEDLINE, Embase, and Cochrane Library from Jan 1, 2011, to March 1, 2020, for studies of adult and adolescent HIV-positive inpatients enrolled regardless of tuberculosis signs and symptoms. The separate reference standards were culture and Xpert. Xpert was selected since it is most likely to be the confirmatory test used in practice. We assessed the proportion of inpatients eligible for Xpert testing using the WHO algorithm; assessed the accuracy of W4SS and alternative screening tests or strategies to guide diagnostic testing; and compared the accuracy of the WHO Xpert algorithm (W4SS followed by Xpert) with Xpert for all. We obtained pooled proportion estimates with a random-effects model, assessed diagnostic accuracy by fitting random-effects bivariate models, and assessed diagnostic yield descriptively. This systematic review has been registered on PROSPERO (CRD42020155895).
FINDINGS
Of 6162 potentially eligible publications, six were eligible and we obtained data for all of the six publications (n=3660 participants). The pooled proportion of inpatients eligible for an Xpert was 90% (95% CI 89-91; n=3658). Among screening tests to guide diagnostic testing, W4SS and C-reactive protein (≥5 mg/L) had highest sensitivities (≥96%) but low specificities (≤12%); cough (≥2 weeks), haemoglobin concentration (<8 g/dL), body-mass index (<18·5 kg/m2), and lymphadenopathy had higher specificities (61-90%) but suboptimal sensitivities (12-57%). The WHO Xpert algorithm (W4SS followed by Xpert) had a sensitivity of 76% (95% CI 67-84) and specificity of 93% (88-96; n=637). Xpert for all had similar accuracy to the WHO Xpert algorithm: sensitivity was 78% (95% CI 69-85) and specificity was 93% (87-96; n=639). In two cohorts that had sputum and non-sputum samples collected for culture or Xpert, diagnostic yield of sputum Xpert was 41-70% and 61-64% for urine Xpert.
INTERPRETATION
The W4SS and other potential screening tests to guide Xpert testing have suboptimal accuracy in HIV-positive inpatients. On the basis of these findings, WHO now strongly recommends molecular rapid diagnostic testing in all medical HIV-positive inpatients in settings where tuberculosis prevalence is higher than 10%.
Since 2011, WHO has recommended that HIV-positive inpatients be routinely screened for tuberculosis with the WHO four-symptom screen (W4SS) and, if screened positive, receive a molecular WHO-recommended rapid diagnostic test (eg, Xpert MTB/RIF [Xpert] assay). To inform updated WHO tuberculosis screening guidelines, we conducted a systematic review and individual participant data meta-analysis to assess the performance of W4SS and alternative screening tests to guide Xpert testing and compare the diagnostic accuracy of the WHO Xpert algorithm (ie, W4SS followed by Xpert) with Xpert for all HIV-positive inpatients.
METHODS
We searched MEDLINE, Embase, and Cochrane Library from Jan 1, 2011, to March 1, 2020, for studies of adult and adolescent HIV-positive inpatients enrolled regardless of tuberculosis signs and symptoms. The separate reference standards were culture and Xpert. Xpert was selected since it is most likely to be the confirmatory test used in practice. We assessed the proportion of inpatients eligible for Xpert testing using the WHO algorithm; assessed the accuracy of W4SS and alternative screening tests or strategies to guide diagnostic testing; and compared the accuracy of the WHO Xpert algorithm (W4SS followed by Xpert) with Xpert for all. We obtained pooled proportion estimates with a random-effects model, assessed diagnostic accuracy by fitting random-effects bivariate models, and assessed diagnostic yield descriptively. This systematic review has been registered on PROSPERO (CRD42020155895).
FINDINGS
Of 6162 potentially eligible publications, six were eligible and we obtained data for all of the six publications (n=3660 participants). The pooled proportion of inpatients eligible for an Xpert was 90% (95% CI 89-91; n=3658). Among screening tests to guide diagnostic testing, W4SS and C-reactive protein (≥5 mg/L) had highest sensitivities (≥96%) but low specificities (≤12%); cough (≥2 weeks), haemoglobin concentration (<8 g/dL), body-mass index (<18·5 kg/m2), and lymphadenopathy had higher specificities (61-90%) but suboptimal sensitivities (12-57%). The WHO Xpert algorithm (W4SS followed by Xpert) had a sensitivity of 76% (95% CI 67-84) and specificity of 93% (88-96; n=637). Xpert for all had similar accuracy to the WHO Xpert algorithm: sensitivity was 78% (95% CI 69-85) and specificity was 93% (87-96; n=639). In two cohorts that had sputum and non-sputum samples collected for culture or Xpert, diagnostic yield of sputum Xpert was 41-70% and 61-64% for urine Xpert.
INTERPRETATION
The W4SS and other potential screening tests to guide Xpert testing have suboptimal accuracy in HIV-positive inpatients. On the basis of these findings, WHO now strongly recommends molecular rapid diagnostic testing in all medical HIV-positive inpatients in settings where tuberculosis prevalence is higher than 10%.
Journal Article > ResearchAbstract Only
J. Infect.. 2022 May 16; Volume S0163-4453 (Issue 22); 00292-4.; DOI:10.1016/j.jinf.2022.05.010
Dhana A, Hamada Y, Kengne AP, Kerkhoff AD, Broger T, et al.
J. Infect.. 2022 May 16; Volume S0163-4453 (Issue 22); 00292-4.; DOI:10.1016/j.jinf.2022.05.010
BACKGROUND
WHO recommends urine lateral-flow lipoarabinomannan (LF-LAM) testing with AlereLAM in HIV-positive inpatients only if screening criteria are met. We assessed the performance of WHO screening criteria and alternative screening tests/strategies to guide LF-LAM testing and compared diagnostic accuracy of the WHO AlereLAM algorithm (WHO screening criteria → AlereLAM) with AlereLAM and FujiLAM (a novel LF-LAM test).
METHODS
We searched MEDLINE, Embase, and Cochrane Library from Jan 1, 2011 to March 1, 2020 for studies among adult/adolescent HIV-positive inpatients regardless of tuberculosis signs and symptoms. The reference standards were 1) AlereLAM or FujiLAM for screening tests/strategies and 2) culture or Xpert for AlereLAM/FujiLAM. We determined proportion of inpatients eligible for AlereLAM using WHO screening criteria; assessed accuracy of WHO criteria and alternative screening tests/strategies to guide LF-LAM testing; compared accuracy of WHO AlereLAM algorithm with AlereLAM/FujiLAM in all; and determined diagnostic yield of AlereLAM, FujiLAM, and Xpert MTB/RIF (Xpert). We estimated pooled proportions with a random-effects model, assessed diagnostic accuracy using random-effects bivariate models, and assessed diagnostic yield descriptively.
FINDINGS
We obtained data from all 5 identified studies (n=3,504). The pooled proportion of inpatients eligible for AlereLAM using WHO criteria was 93% (95%CI 91, 95). Among screening tests/strategies to guide LF-LAM testing, WHO criteria, C-reactive protein (≥5 mg/L), and CD4 count (<200 cells/μL) had high sensitivities but low specificities; cough (≥2 weeks), haemoglobin (<8 g/dL), body mass index (<18.5 kg/m2), lymphadenopathy, and WHO-defined danger signs had higher specificities but suboptimal sensitivities. AlereLAM in all had the same sensitivity (62%) and specificity (88%) as WHO AlereLAM algorithm. Sensitivity of FujiLAM and AlereLAM was 69% and 48%, while specificity was 48% and 96%, respectively. Diagnostic yield of sputum Xpert was 29-41%, AlereLAM was 39-76%, and urine Xpert was 35-62%. In one study, FujiLAM diagnosed 80% of tuberculosis cases (vs 39% for AlereLAM), and sputum Xpert combined with AlereLAM, urine Xpert, or FujiLAM diagnosed 69%, 81%, and 92% of all cases, respectively.
INTERPRETATION
WHO criteria and alternative screening tests/strategies have limited utility in guiding LF-LAM testing, suggesting that AlereLAM testing in all HIV-positive medical inpatients be implemented. Routine FujiLAM may improve tuberculosis diagnosis.
WHO recommends urine lateral-flow lipoarabinomannan (LF-LAM) testing with AlereLAM in HIV-positive inpatients only if screening criteria are met. We assessed the performance of WHO screening criteria and alternative screening tests/strategies to guide LF-LAM testing and compared diagnostic accuracy of the WHO AlereLAM algorithm (WHO screening criteria → AlereLAM) with AlereLAM and FujiLAM (a novel LF-LAM test).
METHODS
We searched MEDLINE, Embase, and Cochrane Library from Jan 1, 2011 to March 1, 2020 for studies among adult/adolescent HIV-positive inpatients regardless of tuberculosis signs and symptoms. The reference standards were 1) AlereLAM or FujiLAM for screening tests/strategies and 2) culture or Xpert for AlereLAM/FujiLAM. We determined proportion of inpatients eligible for AlereLAM using WHO screening criteria; assessed accuracy of WHO criteria and alternative screening tests/strategies to guide LF-LAM testing; compared accuracy of WHO AlereLAM algorithm with AlereLAM/FujiLAM in all; and determined diagnostic yield of AlereLAM, FujiLAM, and Xpert MTB/RIF (Xpert). We estimated pooled proportions with a random-effects model, assessed diagnostic accuracy using random-effects bivariate models, and assessed diagnostic yield descriptively.
FINDINGS
We obtained data from all 5 identified studies (n=3,504). The pooled proportion of inpatients eligible for AlereLAM using WHO criteria was 93% (95%CI 91, 95). Among screening tests/strategies to guide LF-LAM testing, WHO criteria, C-reactive protein (≥5 mg/L), and CD4 count (<200 cells/μL) had high sensitivities but low specificities; cough (≥2 weeks), haemoglobin (<8 g/dL), body mass index (<18.5 kg/m2), lymphadenopathy, and WHO-defined danger signs had higher specificities but suboptimal sensitivities. AlereLAM in all had the same sensitivity (62%) and specificity (88%) as WHO AlereLAM algorithm. Sensitivity of FujiLAM and AlereLAM was 69% and 48%, while specificity was 48% and 96%, respectively. Diagnostic yield of sputum Xpert was 29-41%, AlereLAM was 39-76%, and urine Xpert was 35-62%. In one study, FujiLAM diagnosed 80% of tuberculosis cases (vs 39% for AlereLAM), and sputum Xpert combined with AlereLAM, urine Xpert, or FujiLAM diagnosed 69%, 81%, and 92% of all cases, respectively.
INTERPRETATION
WHO criteria and alternative screening tests/strategies have limited utility in guiding LF-LAM testing, suggesting that AlereLAM testing in all HIV-positive medical inpatients be implemented. Routine FujiLAM may improve tuberculosis diagnosis.