YEMEN
The true burden of the COVID-19 pandemic in Yemen is largely underestimated. The official surveillance data is limited to the southern governorates only. The country has experienced two waves so far and until May 31 2021, the total number of confirmed cases reported was 6 746 with 1 322 associated deaths. With limited testing capacity, PCR tests are spared for suspect cases presenting with severe symptoms only. MSF has been operating several COVID-19 projects in the southern and northern parts since the beginning of the pandemic. To date, MSF France has treated 2 138 COVID-19 patients. The in-hospital mortality was 30%. This presentation provides an overview of the evolution of the pandemic in Yemen and a description of patients seen at MSF health facilities.
AFGHANISTAN
Afghanistan is currently experiencing a third wave of COVID-19. To date (31 May 2021) a total of nearly 73 000 confirmed cases and 3 000 deaths have been reported. The PCR testing capacity remains limited, particularly outside the national capital, and the characteristics of suspected patients are poorly described. MSF has bee supporting the pandemic response in Herat, the regional capital of Western Afghanistan, by running a COVID-19 triage at the Herat Regional Hospital and through case management. To date, over 31 000 patients have been received at the triage, and, if required, oriented towards appropriate care. In addition, patient data collected at the triage facility are a valuable surveillance tool since they allow to follow epidemic trends and to describe patient characteristics. Here we give an update about the current situation in Afghanistan and Herat and describe the characteristics of patients through the three epidemic waves.
BACKRGOUND
The recombinant vesicular stomatitis virus-Zaire Ebola virus (rVSV-ZEBOV) vaccine is the only WHO prequalified vaccine recommended for use to respond to outbreaks of Ebola virus (species Zaire ebolavirus) by WHO's Strategic Advisory Group of Experts on Immunization. Despite the vaccine's widespread use during several outbreaks, no real-world effectiveness estimates are currently available in the literature.
METHODS
We conducted a retrospective test-negative analysis to estimate effectiveness of rVSV-ZEBOV vaccination against Ebola virus disease during the 2018-20 epidemic in the Democratic Republic of the Congo, using data on suspected Ebola virus disease cases collected from Ebola treatment centres. Those eligible for inclusion had an available Ebola virus RT-PCR result, available key data, were eligible for vaccination during the outbreak, and had symptom onset aligning with the period in which a ring-vaccination protocol was in use. After imputing missing data, each individual confirmed by RT-PCR to be Ebola virus disease-positive (defined as a case) was matched to one individual negative for Ebola virus disease (control) by sex, age, health zone, and month of symptom onset. Effectiveness was estimated from the odds ratio of being vaccinated (≥10 days before symptom onset) versus being unvaccinated among cases and controls, after adjusting for the matching factors. The imputation, matching and effectiveness estimation, was repeated 500 times.
FINDINGS
1273 (4·8%) of 26 438 eligible individuals were positive for Ebola virus disease (cases) and 25 165 (95·2%) were negative (controls). 40 (3·1%) cases and 1271 (5·1%) controls were reported as being vaccinated at least 10 days before symptom onset. After selecting individuals who reported exposure to an individual with Ebola virus disease within the 21 days before symptom onset and matching, the analysis datasets comprised a median of 309 cases and 309 controls. 10 days or more after vaccination, the effectiveness of rVSV-ZEBOV against Ebola virus disease was estimated to be 84% (95% credible interval 70-92).
INTERPRETATION
This analysis is the first to provide estimates of the real-world effectiveness of the rVSV-ZEBOV vaccine against Ebola virus disease, amid the widespread use of the vaccine during a large Ebola virus disease outbreak. Our findings confirm that rVSV-ZEBOV is highly protective against Ebola virus disease and support its use during outbreaks, even in challenging contexts such as in the eastern Democratic Republic of the Congo.
Unrest in Myanmar in August 2017 resulted in the movement of over 700,000 Rohingya refugees to overcrowded camps in Cox's Bazar, Bangladesh. A large outbreak of diphtheria subsequently began in this population.
METHODS AND FINDINGS
Data were collected during mass vaccination campaigns (MVCs), contact tracing activities, and from 9 Diphtheria Treatment Centers (DTCs) operated by national and international organizations. These data were used to describe the epidemiological and clinical features and the control measures to prevent transmission, during the first 2 years of the outbreak. Between November 10, 2017 and November 9, 2019, 7,064 cases were reported: 285 (4.0%) laboratory-confirmed, 3,610 (51.1%) probable, and 3,169 (44.9%) suspected cases. The crude attack rate was 51.5 cases per 10,000 person-years, and epidemic doubling time was 4.4 days (95% confidence interval [CI] 4.2-4.7) during the exponential growth phase. The median age was 10 years (range 0-85), and 3,126 (44.3%) were male. The typical symptoms were sore throat (93.5%), fever (86.0%), pseudomembrane (34.7%), and gross cervical lymphadenopathy (GCL; 30.6%). Diphtheria antitoxin (DAT) was administered to 1,062 (89.0%) out of 1,193 eligible patients, with adverse reactions following among 229 (21.6%). There were 45 deaths (case fatality ratio [CFR] 0.6%). Household contacts for 5,702 (80.7%) of 7,064 cases were successfully traced. A total of 41,452 contacts were identified, of whom 40,364 (97.4%) consented to begin chemoprophylaxis; adherence was 55.0% (N = 22,218) at 3-day follow-up. Unvaccinated household contacts were vaccinated with 3 doses (with 4-week interval), while a booster dose was administered if the primary vaccination schedule had been completed. The proportion of contacts vaccinated was 64.7% overall. Three MVC rounds were conducted, with administrative coverage varying between 88.5% and 110.4%. Pentavalent vaccine was administered to those aged 6 weeks to 6 years, while tetanus and diphtheria (Td) vaccine was administered to those aged 7 years and older. Lack of adequate diagnostic capacity to confirm cases was the main limitation, with a majority of cases unconfirmed and the proportion of true diphtheria cases unknown.
CONCLUSIONS
To our knowledge, this is the largest reported diphtheria outbreak in refugee settings. We observed that high population density, poor living conditions, and fast growth rate were associated with explosive expansion of the outbreak during the initial exponential growth phase. Three rounds of mass vaccinations targeting those aged 6 weeks to 14 years were associated with only modestly reduced transmission, and additional public health measures were necessary to end the outbreak. This outbreak has a long-lasting tail, with Rt oscillating at around 1 for an extended period. An adequate global DAT stockpile needs to be maintained. All populations must have access to health services and routine vaccination, and this access must be maintained during humanitarian crises.
We evaluated the spatiotemporal clustering of rapid diagnostic test−positive cholera cases in Uvira, eastern Democratic Republic of the Congo. We detected spatiotemporal clusters that consistently overlapped with major rivers, and we outlined the extent of zones of increased risk that are compatible with the radii currently used for targeted interventions.