Long-lasting insecticidal nets (LLINs) are one of the key interventions in the global fight against malaria. Since 2014, mass distribution campaigns of LLINs aim for universal access by all citizens of Burundi. In this context, we assess the impact of LLINs mass distribution campaigns on malaria incidence, focusing on the endemic highland health districts. We also explored the possible correlation between observed trends in malaria incidence with any variations in climate conditions.
METHODS
Malaria cases for 2011—2019 were obtained from the National Health Information System. We developed a generalised additive model based on a time series of routinely collected data with malaria incidence as the response variable and timing of LLIN distribution as an explanatory variable to investigate the duration and magnitude of the LLIN effect on malaria incidence. We added a seasonal and continuous-time component as further explanatory variables, and health district as a random effect to account for random natural variation in malaria cases between districts.
RESULTS
Malaria transmission in Burundian highlands was clearly seasonal and increased non-linearly over the study period. Further, a fast and steep decline of malaria incidence was noted during the first year after mass LLIN distribution (p<0.0001). In years 2 and 3 after distribution, malaria cases started to rise again to levels higher than before the control intervention.
CONCLUSION
This study highlights that LLINs did reduce the incidence in the first year after a mass distribution campaign, but in the context of Burundi, LLINs lost their impact after only 1 year.
In sub-Saharan Africa, reported COVID-19 numbers have been lower than anticipated, even when considering populations’ younger age. The extent to which risk factors, established in industrialised countries, impact the risk of infection and of disease in populations in sub-Saharan Africa, remains unclear. We estimated the incidence of mild and moderate COVID-19 in urban Mozambique and analysed factors associated with infection and disease in a population-based surveillance study. During December 2020-March 2022, 1,561 households (6,049 participants, median 21 years, 54.8% female, 7.3% disclosed HIV positive) of Polana Caniço, Maputo, Mozambique, were visited biweekly to report respiratory symptoms, anosmia, or ageusia, and self-administer a nasal swab for SARS-CoV-2 testing. Every three months, dried blood spots of a subset of participants (1,412) were collected for detection of antibodies against SARS-CoV-2 spike glycoprotein and nucleocapsid protein. Per 1000 person-years, 364.5 (95%CI 352.8–376.1) respiratory illness episodes were reported, of which 72.2 (95%CI 60.6–83.9) were COVID-19. SARS-CoV-2 seroprevalence rose from 4.8% (95%CI 1.1–8.6%) in December 2020 to 34.7% (95%CI 20.2–49.3%) in June 2021, when 3.0% were vaccinated. Increasing age, chronic lung disease, hypertension, and overweight increased risk of COVID-19. Older age increased the risk of SARS-CoV-2 seroconversion. We observed no association between socio-economic status, behaviour and COVID-19 or SARS-CoV-2 seroconversion. Active surveillance in an urban population confirmed frequent COVID-19 underreporting, yet indicated that the large majority of cases were mild and non-febrile. In contrast to reports from industrialised countries, social deprivation did not increase the risk of infection nor disease.
Outcomes of sexual violence care programmes may vary according to the profile of survivors, type of violence suffered, and local context. Analysis of existing sexual violence care services could lead to their better adaptation to the local contexts. We therefore set out to compare the Médecins Sans Frontières sexual violence programmes in the Democratic Republic of Congo (DRC) in a zone of conflict (Masisi, North Kivu) and post-conflict (Niangara, Haut-Uélé).
METHODS
A retrospective descriptive cohort study, using routine programmatic data from the MSF sexual violence programmes in Masisi and Niangara, DRC, for 2012.
RESULTS
In Masisi, 491 survivors of sexual violence presented for care, compared to 180 in Niangara. Niangara saw predominantly sexual violence perpetrated by civilians who were known to the victim (48%) and directed against children and adolescents (median age 15 (IQR 13–17)), while sexual violence in Masisi was more directed towards adults (median age 26 (IQR 20–35)), and was characterised by marked brutality, with higher levels of gang rape, weapon use, and associated violence; perpetrated by the military (51%). Only 60% of the patients in Masisi and 32% of those in Niangara arrived for a consultation within the critical timeframe of 72 hours, when prophylaxis for HIV and sexually transmitted infections is most effective. Survivors were predominantly referred through community programmes. Treatment at first contact was typically efficient, with high (>95%) coverage rates of prophylaxes. However, follow-up was poor, with only 49% of all patients in Masisi and 61% in Niangara returning for follow-up, and consequently low rates of treatment and/or vaccination completion.
CONCLUSION
This study has identified a number of weak and strong points in the sexual violence programmes of differing contexts, indicating gaps which need to be addressed, and strengths of both programmes that may contribute to future models of context-specific sexual violence programmes.
BACKGROUND
Traditionally in the Democratic Republic of the Congo (DRC), centralised Ebola treatment centres (ETCs) have been set exclusively for Ebola virus disease (EVD) case management during outbreaks. During the 2020 EVD outbreak in DRC’s Equateur Province, existing health centres were equipped as decentralised treatment centres (DTC) to improve access for patients with suspected EVD. Between ETCs and DTCs, we compared the time from symptom onset to admission and diagnosis among patients with suspected EVD.
METHODS
This was a cohort study based on analysis of a line-list containing demographic and clinical information of patients with suspected EVD admitted to any EVD health facility during the outbreak.
RESULTS
Of 2359 patients with suspected EVD, 363 (15%) were first admitted to a DTC. Of 1996 EVD-suspected patients initially admitted to an ETC, 72 (4%) were confirmed as EVD-positive. Of 363 EVD-suspected patients initially admitted to a DTC, 6 (2%) were confirmed and managed as EVD-positive in the DTC. Among all EVD-suspected patients, the median (interquartile range) duration between symptom onset and admission was 2 (1-4) days in a DTC compared to 4 (2-7) days in an ETC (p<0.001). Similarly, time from symptom onset to admission was significantly shorter among EVD-suspected patients ultimately diagnosed as EVD-negative.
CONCLUSIONS
Since <5% of the EVD-suspected patients admitted were eventually diagnosed with EVD, there is a need for better screening to optimise resource utilization and outbreak control. Only one in seven EVD-suspected patients were admitted to a DTC first, as the DTCs were piloted in a limited and phased manner. However, there is a case to be made for considering decentralized care especially in remote and hard-to-reach areas in places like the DRC to facilitate early access to care, contain viral shedding by patients with EVD and ensure no disrupted provision of non-EVD services.
In the wake of the recent outbreak of Ebola virus disease (EVD) in several African countries, the World Health Organization prioritized the evaluation of treatment with convalescent plasma derived from patients who have recovered from the disease. We evaluated the safety and efficacy of convalescent plasma for the treatment of EVD in Guinea.
METHODS
In this nonrandomized, comparative study, 99 patients of various ages (including pregnant women) with confirmed EVD received two consecutive transfusions of 200 to 250 ml of ABO-compatible convalescent plasma, with each unit of plasma obtained from a separate convalescent donor. The transfusions were initiated on the day of diagnosis or up to 2 days later. The level of neutralizing antibodies against Ebola virus in the plasma was unknown at the time of administration. The control group was 418 patients who had been treated at the same center during the previous 5 months. The primary outcome was the risk of death during the period from 3 to 16 days after diagnosis with adjustments for age and the baseline cycle-threshold value on polymerase-chain-reaction assay; patients who had died before day 3 were excluded. The clinically important difference was defined as an absolute reduction in mortality of 20 percentage points in the convalescent-plasma group as compared with the control group.
RESULTS
A total of 84 patients who were treated with plasma were included in the primary analysis. At baseline, the convalescent-plasma group had slightly higher cycle-threshold values and a shorter duration of symptoms than did the control group, along with a higher frequency of eye redness and difficulty in swallowing. From day 3 to day 16 after diagnosis, the risk of death was 31% in the convalescent-plasma group and 38% in the control group (risk difference, -7 percentage points; 95% confidence interval [CI], -18 to 4). The difference was reduced after adjustment for age and cycle-threshold value (adjusted risk difference, -3 percentage points; 95% CI, -13 to 8). No serious adverse reactions associated with the use of convalescent plasma were observed.
CONCLUSIONS
The transfusion of up to 500 ml of convalescent plasma with unknown levels of neutralizing antibodies in 84 patients with confirmed EVD was not associated with a significant improvement in survival. (Funded by the European Union's Horizon 2020 Research and Innovation Program and others; ClinicalTrials.gov number, NCT02342171.).