BACKGROUND
Between December 2015 and July 2016, a yellow fever (YF) outbreak affected urban areas of Angola and the Democratic Republic of the Congo (DRC). We described the outbreak in DRC and assessed the accuracy of the YF case definition, to facilitate early diagnosis of cases in future urban outbreaks.
METHODOLOGY/PRINCIPAL FINDINGS
In DRC, suspected YF infection was defined as jaundice within 2 weeks after acute fever onset and was confirmed by either IgM serology or PCR for YF viral RNA. We used case investigation and hospital admission forms. Comparing clinical signs between confirmed and discarded suspected YF cases, we calculated the predictive values of each sign for confirmed YF and the diagnostic accuracy of several suspected YF case definitions. Fifty seven of 78 (73%) confirmed cases had travelled from Angola: 88% (50/57) men; median age 31 years (IQR 25–37). 15 (19%) confirmed cases were infected locally in urban settings in DRC. Median time from symptom onset to healthcare consultation was 7 days (IQR 6–9), to appearance of jaundice 8 days (IQR 7–11), to sample collection 9 days (IQR 7–14), and to hospitalization 17 days (IQR 11–26). A case definition including fever or jaundice, combined with myalgia or a negative malaria test, yielded an improved sensitivity (100%) and specificity (57%).
CONCLUSIONS/SIGNIFICANCE
As jaundice appeared late, the majority of cases were diagnosed too late for supportive care and prompt vector control. In areas with known local YF transmission, a suspected case definition without jaundice as essential criterion could facilitate earlier YF diagnosis, care and control.
Measles continues to circulate in the Democratic Republic of Congo, and the country suffered from several important outbreaks over the last 5 years. Despite a large outbreak starting in the former province of Katanga in 2010 and the resulting immunization activities, another outbreak occurred in 2015 in this same region. We conducted measles seroprevalence surveys in four health zones (HZ) in the former Katanga Province in order to assess the immunity against measles in children 6 months to 14 years after the 2015 outbreak.
METHODS:
We conducted multi-stage cluster surveys stratified by age group in four HZs, Kayamba, Malemba-Nkulu, Fungurume, and Manono. The age groups were 6-11 months, 12-59 months, and 5-14 years in Kayamba and Malemba-Nkulu, 6-59 months and 5-14 years in Manono and Fungurume. The serological status was measured on dried capillary blood spots collected systematically along with vaccination status (including routine Extended Program of Immunization (EPI), and supplementary immunization activities (SIAs)) and previous self-reported history of suspected measles.
RESULTS:
Overall seroprevalence against measles was 82.7% in Kayamba, 97.6% in Malemba-Nkulu, 83.2% in Manono, and 74.4% in Fungurume, and it increased with age in all HZs. It was 70.7 and 93.8% in children 12-59 months in Kayamba and Malemba-Nkulu, and 49.8 and 64.7% in children 6-59 months in Fungurume and Manono. The EPI coverage was low but varied across HZ. The accumulation of any type of vaccination against measles resulted in an overall vaccine coverage (VC) of at least 85% in children 12-59 months in Kayamba and Malemba-Nkulu, 86.1 and 74.8% in children 6-59 months in Fungurume and Manono. Previous measles infection in 2015-early 2016 was more frequently reported in children aged 12-59 months or 6-59 months (depending on the HZ).
CONCLUSION:
The measured seroprevalence was consistent with the events that occurred in these HZs over the past few years. Measles seroprevalence might prove a valuable source of information to help adjust the timing of future SIAs and prioritizing support to the EPI in this region as long as the VC does not reach a level high enough to efficiently prevent epidemic flare-ups.
METHODS: An individual patient data (IPD) analysis was conducted on efficacy outcomes in 26 clinical studies in sub-Saharan Africa using the WHO protocol with similar primary and secondary endpoints.
RESULTS: A total of 11,700 patients (75% under 5 years old), from 33 different sites in 16 countries were followed for 28 days. Loss to follow-up was 4.9% (575/11,700). AS&AQ was given to 5,897 patients. Of these, 82% (4,826/5,897) were included in randomized comparative trials with polymerase chain reaction (PCR) genotyping results and compared to 5,413 patients (half receiving an ACT). AS&AQ and other ACT comparators resulted in rapid clearance of fever and parasitaemia, superior to non-ACT. Using survival analysis on a modified intent-to-treat population, the Day 28 PCR-adjusted efficacy of AS&AQ was greater than 90% (the WHO cut-off) in 11/16 countries. In randomized comparative trials (n = 22), the crude efficacy of AS&AQ was 75.9% (95% CI 74.6-77.1) and the PCR-adjusted efficacy was 93.9% (95% CI 93.2-94.5). The risk (weighted by site) of failure PCR-adjusted of AS&AQ was significantly inferior to non-ACT, superior to dihydroartemisinin-piperaquine (DP, in one Ugandan site), and not different from AS+SP or AL (artemether-lumefantrine). The risk of gametocyte appearance and the carriage rate of AS&AQ was only greater in one Ugandan site compared to AL and DP, and lower compared to non-ACT (p = 0.001, for all comparisons). Anaemia recovery was not different than comparator groups, except in one site in Rwanda where the patients in the DP group had a slower recovery.
CONCLUSION: AS&AQ compares well to other treatments and meets the WHO efficacy criteria for use against falciparum malaria in many, but not all, the sub-Saharan African countries where it was studied. Efficacy varies between and within countries. An IPD analysis can inform general and local treatment policies. Ongoing monitoring evaluation is required.
Quantification of human interactions relevant to infectious disease transmission through social contact is central to predict disease dynamics, yet data from low-resource settings remain scarce.
METHODS
We undertook a social contact survey in rural Uganda, whereby participants were asked to recall details about the frequency, type, and socio-demographic characteristics of any conversational encounter that lasted for ≥5 min (henceforth defined as 'contacts') during the previous day. An estimate of the number of 'casual contacts' (i.e. < 5 min) was also obtained.
RESULTS
In total, 566 individuals were included in the study. On average participants reported having routine contact with 7.2 individuals (range 1-25). Children aged 5-14 years had the highest frequency of contacts and the elderly (≥65 years) the fewest (P < 0.001). A strong age-assortative pattern was seen, particularly outside the household and increasingly so for contacts occurring further away from home. Adults aged 25-64 years tended to travel more often and further than others, and males travelled more frequently than females.
CONCLUSION
Our study provides detailed information on contact patterns and their spatial characteristics in an African setting. It therefore fills an important knowledge gap that will help more accurately predict transmission dynamics and the impact of control strategies in such areas.
To assess the performance of the SD Bioline Cholera Ag O1/O139 rapid diagnostic test (RDT) compared to a reference standard combining culture and PCR for the diagnosis of cholera cases during an outbreak.
METHODS
RDT and bacterial culture were performed on site using fresh stools collected from cholera suspected cases, and from stools enriched in alkaline peptone water. Dried stool samples on filter paper were tested for V. cholerae by PCR in Lusaka (as part of a laboratory technology transfer project) and at a reference laboratory in Paris, France. A sample was considered positive for cholera by the reference standard if any of the culture or PCR tests was positive for V. cholerae O1 or O139.
RESULTS
Among the 170 samples tested with SD Bioline and compared to the reference standard, the RDT showed a sensitivity of 90.9% (95% CI: 81.3-96.6) and specificity of 95.2% (95% CI: 89.1-98.4). After enrichment, the sensitivity was 95.5% (95% CI: 87.3-99.1) and specificity 100% (95% CI: 96.5-100).
CONCLUSION
The observed sensitivity and specificity were within recommendations set by the Global Task Force for Cholera Control on the use of cholera RDT (sensitivity = 90%; specificity = 85%). Although the sample size was small, our findings suggest that the SD Bioline RDT could be used in the field to rapidly alert public health officials to the likely presence of cholera cases when an outbreak is suspected.
In April 2016, an emergency vaccination campaign using one dose of Oral Cholera Vaccine (OCV) was organized in response to a cholera outbreak that started in Lusaka in February 2016. In December 2016, a second round of vaccination was conducted, with the objective of increasing the duration of protection, before the high-risk period for cholera transmission. We assessed vaccination coverage for the first and second rounds of the OCV campaign.
METHODS:
Vaccination coverage was estimated after each round from a sample selected from targeted-areas for vaccination using a cross-sectional survey in to establish the vaccination status of the individuals recruited. The study population included all individuals older than 12 months residing in the areas targeted for vaccination. We interviewed 505 randomly selected individuals after the first round and 442 after the second round. Vaccination status was ascertained either by vaccination card or verbal reporting. Households were selected using spatial random sampling.
RESULTS:
The vaccination coverage with two doses was 58.1% (25/43; 95%CI: 42.1-72.9) in children 1-5 years old, 59.5% (69/116; 95%CI: 49.9-68.5) in children 5-15 years old and 19.9% (56/281; 95%CI: 15.4-25.1) in adults above 15 years old. The overall dropout rate was 10.9% (95%CI: 8.1-14.1). Overall, 69.9% (n = 309/442; 95%CI: 65.4-74.1) reported to have received at least one OCV dose.
CONCLUSIONS:
The areas at highest risk of suffering cholera outbreaks were targeted for vaccination obtaining relatively high vaccine coverage after each round. However, the long delay between doses in areas subject to considerable population movement resulted in many individuals receiving only one OCV dose. Additional vaccination campaigns may be required to sustain protection over time in case of persistence of risk. Further evidence is needed to establish a maximum optimal interval time of a delayed second dose and variations in different settings.