BACKGROUND
Zaire Ebolavirus disease (EVD) outbreaks can be controlled using rVSV-ZEBOV vaccination and other public health measures. People in high-risk areas may have pre-existing antibodies from asymptomatic Ebolavirus exposure that might affect response to rVSV-ZEBOV. Therefore, we assessed the impact pre-existing immunity had on post-vaccination IgG titre, virus neutralisation, and reactogenicity following vaccination.
METHODS
In this prospective cohort study, 2115 consenting close contacts (“proches”) of EVD survivors were recruited. Proches were vaccinated with rVSV-ZEBOV and followed up for 28 days for safety and immunogenicity. Anti-GP IgG titre at baseline and day 28 was assessed by ELISA. Samples from a representative subset were evaluated using live virus neutralisation.
RESULTS
Ten percent were seropositive at baseline. At day 28, IgG in baseline seronegative (GMT 0.106 IU/ml, 95% CI: 0.100 to 0.113) and seropositive (GMT 0.237 IU/ml, 0.210 to 0.267) participants significantly increased from baseline (both p < 0.0001). There was strong correlation between antibody titres and virus neutralisation in day 28 samples (Spearman’s rho 0.75). Vaccinees with baseline IgG antibodies against Zaire Ebolavirus had similar safety profiles to those without detectable antibodies (63.6% vs 66.1% adults experienced any adverse event; 49.1% vs 60.9% in children), with almost all adverse events graded as mild. No serious adverse events were attributed to vaccination. No EVD survivors tested positive for Ebolavirus by RT-PCR.
CONCLUSIONS
These data add further evidence of rVSV-ZEBOV safety and immunogenicity, including in people with pre-existing antibodies from suspected natural ZEBOV infection whose state does not blunt rVSV-ZEBOV immune response. Pre-vaccination serological screening is not required.
BACKRGOUND
The recombinant vesicular stomatitis virus-Zaire Ebola virus (rVSV-ZEBOV) vaccine is the only WHO prequalified vaccine recommended for use to respond to outbreaks of Ebola virus (species Zaire ebolavirus) by WHO's Strategic Advisory Group of Experts on Immunization. Despite the vaccine's widespread use during several outbreaks, no real-world effectiveness estimates are currently available in the literature.
METHODS
We conducted a retrospective test-negative analysis to estimate effectiveness of rVSV-ZEBOV vaccination against Ebola virus disease during the 2018-20 epidemic in the Democratic Republic of the Congo, using data on suspected Ebola virus disease cases collected from Ebola treatment centres. Those eligible for inclusion had an available Ebola virus RT-PCR result, available key data, were eligible for vaccination during the outbreak, and had symptom onset aligning with the period in which a ring-vaccination protocol was in use. After imputing missing data, each individual confirmed by RT-PCR to be Ebola virus disease-positive (defined as a case) was matched to one individual negative for Ebola virus disease (control) by sex, age, health zone, and month of symptom onset. Effectiveness was estimated from the odds ratio of being vaccinated (≥10 days before symptom onset) versus being unvaccinated among cases and controls, after adjusting for the matching factors. The imputation, matching and effectiveness estimation, was repeated 500 times.
FINDINGS
1273 (4·8%) of 26 438 eligible individuals were positive for Ebola virus disease (cases) and 25 165 (95·2%) were negative (controls). 40 (3·1%) cases and 1271 (5·1%) controls were reported as being vaccinated at least 10 days before symptom onset. After selecting individuals who reported exposure to an individual with Ebola virus disease within the 21 days before symptom onset and matching, the analysis datasets comprised a median of 309 cases and 309 controls. 10 days or more after vaccination, the effectiveness of rVSV-ZEBOV against Ebola virus disease was estimated to be 84% (95% credible interval 70-92).
INTERPRETATION
This analysis is the first to provide estimates of the real-world effectiveness of the rVSV-ZEBOV vaccine against Ebola virus disease, amid the widespread use of the vaccine during a large Ebola virus disease outbreak. Our findings confirm that rVSV-ZEBOV is highly protective against Ebola virus disease and support its use during outbreaks, even in challenging contexts such as in the eastern Democratic Republic of the Congo.
During the 2018–2020 Ebola virus disease outbreak in Democratic Republic of the Congo, a phase 3 trial of the Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine (DRC-EB-001) commenced in Goma, with participants being offered the two-dose regimen given 56 days apart. Suspension of trial activities in 2020 due to the COVID-19 pandemic led to some participants receiving a late dose 2 outside the planned interval. Blood samples were collected from adults, adolescents, and children prior to their delayed dose 2 vaccination and 21 days after, and tested for IgG binding antibodies against Ebola virus glycoprotein using the Filovirus Animal Nonclinical Group (FANG) ELISA. Results from 133 participants showed a median two-dose interval of 9.3 months. The pre-dose 2 antibody geometric mean concentration (GMC) was 217 ELISA Units (EU)/mL (95% CI 157; 301) in adults, 378 EU/mL (281; 510) in adolescents, and 558 EU/mL (471; 661) in children. At 21 days post-dose 2, the GMC increased to 22,194 EU/mL (16,726; 29,449) in adults, 37,896 EU/mL (29,985; 47,893) in adolescents, and 34,652 EU/mL (27,906; 43,028) in children. Participants receiving a delayed dose 2 had a higher GMC at 21 days post-dose 2 than those who received a standard 56-day regimen in other African trials, but similar to those who received the regimen with an extended interval.
During the 2018–2020 Ebola virus disease (EVD) outbreak, residents in Goma, Democratic Republic of the Congo, were offered a two-dose prophylactic EVD vaccine. This was the first study to evaluate the safety of this vaccine in pregnant women. Adults, including pregnant women, and children aged ≥1 year old were offered the Ad26.ZEBOV (day 0; dose 1), MVA-BN-Filo (day 56; dose 2) EVD vaccine through an open-label clinical trial. In total, 20,408 participants, including 6635 (32.5%) children, received dose 1. Fewer than 1% of non-pregnant participants experienced a serious adverse event (SAE) following dose 1; one SAE was possibly related to the Ad26.ZEBOV vaccine. Of the 1221 pregnant women, 371 (30.4%) experienced an SAE, with caesarean section being the most common event. No SAEs in pregnant women were considered related to vaccination. Of 1169 pregnancies with a known outcome, 55 (4.7%) ended in a miscarriage, and 30 (2.6%) in a stillbirth. Eleven (1.0%) live births ended in early neonatal death, and five (0.4%) had a congenital abnormality. Overall, 188/891 (21.1%) were preterm births and 79/1032 (7.6%) had low birth weight. The uptake of the two-dose regimen was high: 15,328/20,408 (75.1%). The vaccine regimen was well-tolerated among the study participants, including pregnant women, although further data, ideally from controlled trials, are needed in this crucial group.
Lassa fever (LF), a haemorrhagic illness caused by the Lassa fever virus (LASV), is endemic in West Africa causing an estimated 300 000 to 500 000 cases and 5 000 fatalities every year. Due to its pandemic potential, LF has been placed on the WHO's list of priority pathogens in order to speed up the development of a safe and effective vaccine. However, the design of successful vaccine trials depends on the true prevalence and incidence rates of LF, which are unknown as infections are often asymptomatic and clinical presentations are varied. The aim of the Enable Lassa research programme is to estimate the incidences of LASV infection and LF disease in five West African countries.
METHODS
We conducted a prospective cohort study in Benin, Guinea, Liberia, Nigeria (three sites), and Sierra Leone from 2020 to 2023, with 24 months of follow-up. Each site assessed the incidence of LASV infection, LF disease, or both. When both incidences are assessed the LASV cohort (n = 1 000 per site) was drawn from the LF cohort (n = 5 000 per site). During recruitment participants completed questionnaires on household composition, socioeconomic status, demographic characteristics, and LF history, and blood samples were collected to determine IgG LASV serostatus. LF disease cohort participants were contacted biweekly to identify acute febrile cases, from whom blood samples were drawn to test for active LASV infection using RT-PCR. LASV infection cohort participants were asked for a blood sample every six months to assess LASV IgG serostatus.
RESULTS
Interim results were obtained in October 2022 using partial data. We focus here on the Nigeria-Edo cohort with a follow-up period of 22 months and 3 serological time-points available (T0, T6, T12). We found a baseline seroprevalence of 43% (95% CI: 42% - 45%), an incidence rate of LASV infection of 13% (10% - 16%) and an incidence rate of LF disease of 0.2% (0.1% - 0.3%). These results suggest that LASV infection is common, but LF disease is rare in hotspot communities. Furthermore, our results suggest that pre-exposure to LASV may temporarily reduce the risk of LF disease. Finally, we found evidence that children may be at greater risk of LF disease than adults due to lower pre-exposure.
CONCLUSION
This is the first epidemiological study to measure the incidence of LF disease and LASV infection in West Africa. The estimates will serve as a basis for the design of future vaccine efficacy trials. The interim results, although limited due to partial data, already suggest that a large sample of several tens of thousands of participants will be required and that children should be included, provided that the candidate vaccine is safe and immunogenic in this group.
KEY MESSAGE
Incidence of Lassa fever is needed to inform vaccine trials. Preliminary results show frequent infections but rare disease, suggesting the need for large vaccine trials.
This abstract is not to be quoted for publication.