Journal Article > ReviewFull Text
Clin Microbiol Infect. 2023 July 21; Volume S1198-743X (Issue 23); 00339-7.; DOI:10.1016/j.cmi.2023.07.013
Motta I, Boeree M, Chesov D, Dheda K, Günther G, et al.
Clin Microbiol Infect. 2023 July 21; Volume S1198-743X (Issue 23); 00339-7.; DOI:10.1016/j.cmi.2023.07.013
BACKGROUND
Tuberculosis is a global health challenge and one of the leading causes of death worldwide. In the last decade, the tuberculosis treatment landscape has dramatically changed. After long years of stagnation, new compounds entered the market (bedaquiline, delamanid and pretomanid) and phase III clinical trials have shown promising results towards shortening duration of treatment for both drug-susceptible (Study 31/A5349, TRUNCATE-TB, SHINE) and drug-resistant tuberculosis (STREAM, NiX-TB, ZeNix, TB-PRACTECAL). Dose optimization of rifamycins and repurposed drugs have also brought hopes of further development of safe and effective regimens. Consequently, international and World Health Organization clinical guidelines have been updated multiple times in the last years to keep pace with these advances.
OBJECTIVES
This narrative review aims to summarize the state-of-the-art on treatment of drug-susceptible and drug-resistant tuberculosis, as well as recent trials results and an overview of ongoing clinical trials.
SOURCES
A non-systematic literature review was conducted in PubMed and MEDLINE, focusing on the treatment of tuberculosis. Ongoing clinical trials were listed according to the authors' knowledge, and completed consulting clinicaltrials.gov and other publicly available websites (www.resisttb.org/clinical-trials-progress-report, www.newtbdrugs.org/pipeline/trials).
CONTENT
This review summarizes the recent, major changes in the landscape for drug-susceptible and drug-resistant treatment, with a specific focus on their potential impact on patient outcomes and programmatic TB management. Moreover, insights in host-directed therapies, and advances in pharmacokinetic and pharmacogenomics are discussed. A thorough outline of ongoing therapeutic clinical trials is presented, highlighting different approaches and goals in current TB clinical research.
IMPLICATIONS
Future research should be directed to individualize regimens and protect these recent breakthroughs by preventing and identifying the selection of drug resistance and providing widespread, affordable, patient-centered access to new treatment options for all people affected by tuberculosis.
Tuberculosis is a global health challenge and one of the leading causes of death worldwide. In the last decade, the tuberculosis treatment landscape has dramatically changed. After long years of stagnation, new compounds entered the market (bedaquiline, delamanid and pretomanid) and phase III clinical trials have shown promising results towards shortening duration of treatment for both drug-susceptible (Study 31/A5349, TRUNCATE-TB, SHINE) and drug-resistant tuberculosis (STREAM, NiX-TB, ZeNix, TB-PRACTECAL). Dose optimization of rifamycins and repurposed drugs have also brought hopes of further development of safe and effective regimens. Consequently, international and World Health Organization clinical guidelines have been updated multiple times in the last years to keep pace with these advances.
OBJECTIVES
This narrative review aims to summarize the state-of-the-art on treatment of drug-susceptible and drug-resistant tuberculosis, as well as recent trials results and an overview of ongoing clinical trials.
SOURCES
A non-systematic literature review was conducted in PubMed and MEDLINE, focusing on the treatment of tuberculosis. Ongoing clinical trials were listed according to the authors' knowledge, and completed consulting clinicaltrials.gov and other publicly available websites (www.resisttb.org/clinical-trials-progress-report, www.newtbdrugs.org/pipeline/trials).
CONTENT
This review summarizes the recent, major changes in the landscape for drug-susceptible and drug-resistant treatment, with a specific focus on their potential impact on patient outcomes and programmatic TB management. Moreover, insights in host-directed therapies, and advances in pharmacokinetic and pharmacogenomics are discussed. A thorough outline of ongoing therapeutic clinical trials is presented, highlighting different approaches and goals in current TB clinical research.
IMPLICATIONS
Future research should be directed to individualize regimens and protect these recent breakthroughs by preventing and identifying the selection of drug resistance and providing widespread, affordable, patient-centered access to new treatment options for all people affected by tuberculosis.
Journal Article > Meta-AnalysisFull Text
Lancet. 2018 September 8; Volume 392 (Issue 10150); 821-834.; DOI:10.1016/S0140-6736(18)31644-1
Ahmad N, Ahuja SD, Akkerman OW, Alffenaar JWC, Anderson LF, et al.
Lancet. 2018 September 8; Volume 392 (Issue 10150); 821-834.; DOI:10.1016/S0140-6736(18)31644-1
BACKGROUND
Treatment outcomes for multidrug-resistant tuberculosis remain poor. We aimed to estimate the association of treatment success and death with the use of individual drugs, and the optimal number and duration of treatment with those drugs in patients with multidrug-resistant tuberculosis.
METHODS
In this individual patient data meta-analysis, we searched MEDLINE, Embase, and the Cochrane Library to identify potentially eligible observational and experimental studies published between Jan 1, 2009, and April 30, 2016. We also searched reference lists from all systematic reviews of treatment of multidrug-resistant tuberculosis published since 2009. To be eligible, studies had to report original results, with end of treatment outcomes (treatment completion [success], failure, or relapse) in cohorts of at least 25 adults (aged >18 years). We used anonymised individual patient data from eligible studies, provided by study investigators, regarding clinical characteristics, treatment, and outcomes. Using propensity score-matched generalised mixed effects logistic, or linear regression, we calculated adjusted odds ratios and adjusted risk differences for success or death during treatment, for specific drugs currently used to treat multidrug-resistant tuberculosis, as well as the number of drugs used and treatment duration.
FINDINGS
Of 12 030 patients from 25 countries in 50 studies, 7346 (61%) had treatment success, 1017 (8%) had failure or relapse, and 1729 (14%) died. Compared with failure or relapse, treatment success was positively associated with the use of linezolid (adjusted risk difference 0·15, 95% CI 0·11 to 0·18), levofloxacin (0·15, 0·13 to 0·18), carbapenems (0·14, 0·06 to 0·21), moxifloxacin (0·11, 0·08 to 0·14), bedaquiline (0·10, 0·05 to 0·14), and clofazimine (0·06, 0·01 to 0·10). There was a significant association between reduced mortality and use of linezolid (-0·20, -0·23 to -0·16), levofloxacin (-0·06, -0·09 to -0·04), moxifloxacin (-0·07, -0·10 to -0·04), or bedaquiline (-0·14, -0·19 to -0·10). Compared with regimens without any injectable drug, amikacin provided modest benefits, but kanamycin and capreomycin were associated with worse outcomes. The remaining drugs were associated with slight or no improvements in outcomes. Treatment outcomes were significantly worse for most drugs if they were used despite in-vitro resistance. The optimal number of effective drugs seemed to be five in the initial phase, and four in the continuation phase. In these adjusted analyses, heterogeneity, based on a simulated I2 method, was high for approximately half the estimates for specific drugs, although relatively low for number of drugs and durations analyses.
INTERPRETATION
Although inferences are limited by the observational nature of these data, treatment outcomes were significantly better with use of linezolid, later generation fluoroquinolones, bedaquiline, clofazimine, and carbapenems for treatment of multidrug-resistant tuberculosis. These findings emphasise the need for trials to ascertain the optimal combination and duration of these drugs for treatment of this condition.
Treatment outcomes for multidrug-resistant tuberculosis remain poor. We aimed to estimate the association of treatment success and death with the use of individual drugs, and the optimal number and duration of treatment with those drugs in patients with multidrug-resistant tuberculosis.
METHODS
In this individual patient data meta-analysis, we searched MEDLINE, Embase, and the Cochrane Library to identify potentially eligible observational and experimental studies published between Jan 1, 2009, and April 30, 2016. We also searched reference lists from all systematic reviews of treatment of multidrug-resistant tuberculosis published since 2009. To be eligible, studies had to report original results, with end of treatment outcomes (treatment completion [success], failure, or relapse) in cohorts of at least 25 adults (aged >18 years). We used anonymised individual patient data from eligible studies, provided by study investigators, regarding clinical characteristics, treatment, and outcomes. Using propensity score-matched generalised mixed effects logistic, or linear regression, we calculated adjusted odds ratios and adjusted risk differences for success or death during treatment, for specific drugs currently used to treat multidrug-resistant tuberculosis, as well as the number of drugs used and treatment duration.
FINDINGS
Of 12 030 patients from 25 countries in 50 studies, 7346 (61%) had treatment success, 1017 (8%) had failure or relapse, and 1729 (14%) died. Compared with failure or relapse, treatment success was positively associated with the use of linezolid (adjusted risk difference 0·15, 95% CI 0·11 to 0·18), levofloxacin (0·15, 0·13 to 0·18), carbapenems (0·14, 0·06 to 0·21), moxifloxacin (0·11, 0·08 to 0·14), bedaquiline (0·10, 0·05 to 0·14), and clofazimine (0·06, 0·01 to 0·10). There was a significant association between reduced mortality and use of linezolid (-0·20, -0·23 to -0·16), levofloxacin (-0·06, -0·09 to -0·04), moxifloxacin (-0·07, -0·10 to -0·04), or bedaquiline (-0·14, -0·19 to -0·10). Compared with regimens without any injectable drug, amikacin provided modest benefits, but kanamycin and capreomycin were associated with worse outcomes. The remaining drugs were associated with slight or no improvements in outcomes. Treatment outcomes were significantly worse for most drugs if they were used despite in-vitro resistance. The optimal number of effective drugs seemed to be five in the initial phase, and four in the continuation phase. In these adjusted analyses, heterogeneity, based on a simulated I2 method, was high for approximately half the estimates for specific drugs, although relatively low for number of drugs and durations analyses.
INTERPRETATION
Although inferences are limited by the observational nature of these data, treatment outcomes were significantly better with use of linezolid, later generation fluoroquinolones, bedaquiline, clofazimine, and carbapenems for treatment of multidrug-resistant tuberculosis. These findings emphasise the need for trials to ascertain the optimal combination and duration of these drugs for treatment of this condition.
Journal Article > CommentaryFull Text
Int J Tuberc Lung Dis. 2015 November 1; Volume 19 (Issue 11); DOI:10.5588/ijtld.15.0355
Zachariah R, Ortuno N, Hermans V, Desalegn W, Rust S, et al.
Int J Tuberc Lung Dis. 2015 November 1; Volume 19 (Issue 11); DOI:10.5588/ijtld.15.0355
Journal Article > ResearchFull Text
Trop Med Int Health. 2007 July 1; Volume 12 (Issue 7); DOI:10.1111/j.1365-3156.2007.01871.x
Tostmann A, Boeree M, Harries AD, Sauvageot D, Banda HT, et al.
Trop Med Int Health. 2007 July 1; Volume 12 (Issue 7); DOI:10.1111/j.1365-3156.2007.01871.x
The proportion of patients with antituberculosis drug-induced hepatotoxicity (ATDH) was unexpectedly low during a trial on cotrimoxazole prophylaxis in Malawian HIV-positive pulmonary tuberculosis patients. About 2% of the patients developed grade 2 or 3 hepatotoxicity during tuberculosis (TB) treatment, according to WHO definitions. Data on ATDH in sub-Saharan Africa are limited. Although the numbers are not very strong, our trial and other papers suggest that ATDH is uncommon in this region. These findings are encouraging in that hepatotoxicity may cause less problem than expected, especially in the light of combined HIV/TB treatment, where drug toxicity is a major cause of treatment interruption.
Journal Article > Meta-AnalysisFull Text
Int J Infect Dis. 2020 February 1; Volume 92; DOI:10.1016/j.ijid.2020.01.042
Migliori GB, Tiberi S, Zumla A, Petersen E, Chakaya JM, et al.
Int J Infect Dis. 2020 February 1; Volume 92; DOI:10.1016/j.ijid.2020.01.042
The continuous flow of new research articles on MDR-TB diagnosis, treatment, prevention and rehabilitation requires frequent update of existing guidelines. This review is aimed at providing clinicians and public health staff with an updated and easy-to-consult document arising from consensus of Global Tuberculosis Network (GTN) experts. The core published documents and guidelines have been reviewed including the recently published MDR-TB WHO rapid advice and ATS/CDC/ERS/IDSA guidelines. After a rapid review of epidemiology and risk factors, the clinical priorities on MDR-TB diagnosis (including whole genome sequencing and drug-susceptibility testing interpretations) and treatment (treatment design and management, TB in children) are discussed. Furthermore, the review comprehensively describes the latest information on contact tracing and LTBI management in MDR-TB contacts, while providing guidance on post-treatment functional evaluation and rehabilitation of TB sequelae, infection control and other public health priorities.