LogoLogoMSF Science Portal
  • My saved items
logo

© Médecins Sans Frontières

MSF Science Portal
About MSF Science Portal
About MSF
Contact Us
Frequently Asked Questions (FAQs)
Privacy Policy
Terms of Use

v2.1.4829.produseast1

5 result(s)
Filter and sort
5 result(s)
Journal Article > ResearchFull Text

Drug resistance in Plasmodium falciparum from the Chittagong Hill Tracts, Bangladesh

Trop Med Int Health. 1 June 2004; Volume 9 (Issue 6); DOI:10.1111/j.1365-3156.2004.01249.x
van den Broek IVF, van der Wardt S, Talukder L, Chakma S, Brockman A,  et al.
Trop Med Int Health. 1 June 2004; Volume 9 (Issue 6); DOI:10.1111/j.1365-3156.2004.01249.x
OBJECTIVE: To assess the efficacy of antimalarial treatment and molecular markers of Plasmodium falciparum resistance in the Chittagong Hill Tracts of Bangladesh. METHODS: A total of 203 patients infected with P. falciparum were treated with quinine 3 days plus sulphadoxine/pyrimethamine (SP) combination therapy, and followed up during a 4-week period. Blood samples collected before treatment were genotyped for parasite mutations related to chloroquine (pfcrt and pfmdr1 genes) or SP resistance (dhfr and dhps). RESULTS: Of 186 patients who completed follow-up, 32 patients (17.2%) failed to clear parasitaemia or became positive again within 28 days after treatment. Recurring parasitaemia was related to age (chi(2) = 4.8, P < 0.05) and parasite rates on admission (t = 3.1, P < 0.01). PCR analysis showed that some of these cases were novel infections. The adjusted recrudescence rate was 12.9% (95% CI 8.1-17.7) overall, and 16.6% (95% CI 3.5-29.7), 15.5% (95% CI 8.3-22.7) and 6.9% (95% CI 0.4-13.4) in three age groups (<5 years, 5-14, > or =15). The majority of infections carried mutations associated with chloroquine resistance: 94% at pfcrt and 70% at pfmdr. Sp-resistant genotypes were also frequent: 99% and 73% of parasites carried two or more mutations at dhfr and dhps, respectively. The frequency of alleles at dhfr, dhps and pfmdr was similar in cases that were successfully treated and those that recrudesced. CONCLUSIONS: The clinical trial showed that quinine 3-days combined to SP is still relatively effective in the Chittagong Hill Tracts. However, if this regimen is continued to be widely used, further development of SP resistance and reduced quinine sensitivity are to be expected. The genotyping results suggest that neither chloroquine nor SP can be considered a reliable treatment for P. falciparum malaria any longer in this area of Bangladesh.More
Journal Article > ResearchFull Text

Relapses of Plasmodium vivax infection usually result from activation of heterologous hypnozoites

J Infect Dis. 1 April 2007; Volume 195 (Issue 7); DOI:10.1086/512241
Imwong M, Snounou G, Pukrittayakamee S, Tanomsing N, Kim JH,  et al.
J Infect Dis. 1 April 2007; Volume 195 (Issue 7); DOI:10.1086/512241
BACKGROUND: Relapses originating from hypnozoites are characteristic of Plasmodium vivax infections. Thus, reappearance of parasitemia after treatment can result from relapse, recrudescence, or reinfection. It has been assumed that parasites causing relapse would be a subset of the parasites that caused the primary infection. METHODS: Paired samples were collected before initiation of antimalarial treatment and at recurrence of parasitemia from 149 patients with vivax malaria in Thailand (n=36), where reinfection could be excluded, and during field studies in Myanmar (n=75) and India (n=38). RESULTS: Combined genetic data from 2 genotyping approaches showed that novel P. vivax populations were present in the majority of patients with recurrent infection (107 [72%] of 149 patients overall [78% of patients in Thailand, 75% of patients in Myanmar {Burma}, and 63% of patients in India]). In 61% of the Thai and Burmese patients and in 55% of the Indian patients, the recurrent infections contained none of the parasite genotypes that caused the acute infection. CONCLUSIONS: The P. vivax populations emerging from hypnozoites commonly differ from the populations that caused the acute episode. Activation of heterologous hypnozoite populations is the most common cause of first relapse in patients with vivax malaria.More
Journal Article > ResearchFull Text

Geographical distribution of selected and putatively neutral SNPs in Southeast Asian malaria parasites

Mol Biol Evol. 1 December 2005; Volume 22 (Issue 12); DOI:10.1093/molbev/msi235
Anderson TJC, Nair SA, Sudimack D, Williams JT, Mayxay M,  et al.
Mol Biol Evol. 1 December 2005; Volume 22 (Issue 12); DOI:10.1093/molbev/msi235
Loci targeted by directional selection are expected to show elevated geographical population structure relative to neutral loci, and a flurry of recent papers have used this rationale to search for genome regions involved in adaptation. Studies of functional mutations that are known to be under selection are particularly useful for assessing the utility of this approach. Antimalarial drug treatment regimes vary considerably between countries in Southeast Asia selecting for local adaptation at parasite loci underlying resistance. We compared the population structure revealed by 10 nonsynonymous mutations (nonsynonymous single-nucleotide polymorphisms [nsSNPs]) in four loci that are known to be involved in antimalarial drug resistance, with patterns revealed by 10 synonymous mutations (synonymous single-nucleotide polymorphisms [sSNPs]) in housekeeping genes or genes of unknown function in 755 Plasmodium falciparum infections collected from 13 populations in six Southeast Asian countries. Allele frequencies at known nsSNPs underlying resistance varied markedly between locations (F(ST) = 0.18-0.66), with the highest frequencies on the Thailand-Burma border and the lowest frequencies in neighboring Lao PDR. In contrast, we found weak but significant geographic structure (F(ST) = 0-0.14) for 8 of 10 sSNPs. Importantly, all 10 nsSNPs showed significantly higher F(ST) (P < 8 x 10(-5)) than simulated neutral expectations based on observed F(ST) values in the putatively neutral sSNPs. This result was unaffected by the methods used to estimate allele frequencies or the number of populations used in the simulations. Given that dense single-nucleotide polymorphism (SNP) maps and rapid SNP assay methods are now available for P. falciparum, comparing genetic differentiation across the genome may provide a valuable aid to identifying parasite loci underlying local adaptation to drug treatment regimes or other selective forces. However, the high proportion of polymorphic sites that appear to be under balancing selection (or linked to selected sites) in the P. falciparum genome violates the central assumption that selected sites are rare, which complicates identification of outlier loci, and suggests that caution is needed when using this approach.More
Journal Article > ResearchFull Text

Selection strength and hitchhiking around two anti-malarial resistance genes

Proc Biol Sci. 2 June 2005; Volume 272 (Issue 1568); 1153-1161.; DOI:10.1098/rspb.2004.3026
Nash D, Nair SA, Mayxay M, Newton PN, Guthmann JP,  et al.
Proc Biol Sci. 2 June 2005; Volume 272 (Issue 1568); 1153-1161.; DOI:10.1098/rspb.2004.3026
Neutral mutations may hitchhike to high frequency when they are situated close to sites under positive selection, generating local reductions in genetic diversity. This process is thought to be an important determinant of levels of genomic variation in natural populations. The size of genome regions affected by genetic hitchhiking is expected to be dependent on the strength of selection, but there is little empirical data supporting this prediction. Here, we compare microsatellite variation around two drug resistance genes (chloroquine resistance transporter (pfcrt), chromosome 7, and dihydrofolate reductase (dhfr), chromosome 4) in malaria parasite populations exposed to strong (Thailand) or weak selection (Laos) by anti-malarial drugs. In each population, we examined the point mutations underlying resistance and length variation at 22 (chromosome 4) or 25 (chromosome 7) microsatellite markers across these chromosomes. All parasites from Thailand carried the K76T mutation in pfcrt conferring resistance to chloroquine (CQ) and 2-4 mutations in dhfr conferring resistance to pyrimethamine. By contrast, we found both wild-type and resistant alleles at both genes in Laos. There were dramatic differences in the extent of hitchhiking in the two countries. The size of genome regions affected was smaller in Laos than in Thailand. We observed significant reduction in variation relative to sensitive parasites for 34-64 kb (2-4 cM) in Laos on chromosome 4, compared with 98-137 kb (6-8 cM) in Thailand. Similarly, on chromosome 7, we observed reduced variation for 34-69 kb (2-4 cM) around pfcrt in Laos, but for 195-268 kb (11-16 cM) in Thailand. Reduction in genetic variation was also less extreme in Laos than in Thailand. Most loci were monomorphic in a 12 kb region surrounding both genes on resistant chromosomes from Thailand, whereas in Laos, even loci immediately proximal to selective sites showed some variation on resistant chromosomes. Finally, linkage disequilibrium (LD) decayed more rapidly around resistant pfcrt and dhfr alleles from Laos than from Thailand. These results demonstrate that different realizations of the same selective sweeps may vary considerably in size and shape, in a manner broadly consistent with selection history. From a practical perspective, genomic regions containing resistance genes may be most effectively located by genome-wide association in populations exposed to strong drug selection. However, the lower levels of LD surrounding resistance alleles in populations under weak selection may simplify identification of functional mutations.More
Journal Article > ResearchFull Text

Optimal health and disease management using spatial uncertainty: a geographic characterization of emergent artemisinin-resistant plasmodium falciparum distributions in Southeast Asia

Int J Health Geogr. 24 October 2016; Volume 15 (Issue 1); 37.; DOI:10.1186/s12942-016-0064-6
Grist EP, Fleqq JA, Humphreys G, Mas IS, Anderson TJC,  et al.
Int J Health Geogr. 24 October 2016; Volume 15 (Issue 1); 37.; DOI:10.1186/s12942-016-0064-6
BACKGROUND
Artemisinin-resistant Plasmodium falciparum malaria parasites are now present across much of mainland Southeast Asia, where ongoing surveys are measuring and mapping their spatial distribution. These efforts require substantial resources. Here we propose a generic 'smart surveillance' methodology to identify optimal candidate sites for future sampling and thus map the distribution of artemisinin resistance most efficiently.

METHODS
The approach uses the 'uncertainty' map generated iteratively by a geostatistical model to determine optimal locations for subsequent sampling.

RESULTS
The methodology is illustrated using recent data on the prevalence of the K13-propeller polymorphism (a genetic marker of artemisinin resistance) in the Greater Mekong Subregion.

CONCLUSION
This methodology, which has broader application to geostatistical mapping in general, could improve the quality and efficiency of drug resistance mapping and thereby guide practical operations to eliminate malaria in affected areas.
More