BACKGROUND
Visceral leishmaniasis (VL) is a vector-borne disease caused by Leishmania parasites and transmitted by sand fly bites, targeted for elimination in India. VL primarily affects rural, low-income populations with limited health care access. In South Asia, few studies have explored patients’ perspectives, diagnoses, and treatment experiences; particularly lacking an understanding about the patients’ life experiences outside of clinical research settings.
METHODOLOGY/PRINCIPAL FINDINGS
A qualitative study was conducted in Bihar, India, using moderator-facilitated, protocol-defined discussion. Eighteen adult patients and 12 caregivers of children diagnosed with and treated for VL within the last 12 months were identified by self-report. Mean time from symptom onset to diagnosis was 13.8 days. Challenges of the early patient life experience included lack of urgency by health care professionals, delayed diagnosis, and no guarantee of treatment at the location of their VL diagnosis (63% had to switch to a different center for treatment, at times delaying treatment). Key barriers identified in previous studies that were re-confirmed in this study include out-of-pocket financial burden, absence from work/home duties, and long-distance travel to hospitals. Patients and caregivers (n = 29/30) expressed a preference for a potential oral treatment that could be taken close to home.
CONCLUSIONS/SIGNIFICANCE
This study reveals new insights about the patient life experience and reconfirms previous research indicating that access to care for patients with VL in the Bihar area remains a challenge. Although most patients with VL seek care early, diagnosis often requires multiple visits to a health care facility. Despite access to therapy in public hospitals, some patients reported a preference for private care. Even if diagnosis takes place in a government-funded public setting, some patients reported needing to move from the location of diagnosis to another center to receive therapy, creating an additional burden for patients. As a potential alternative to current parenteral treatment, adult patients and caregivers of pediatric patients expressed interest in a potential oral therapy because it may reduce barriers to access care.
Treatment regimens for post-kala-azar dermal leishmaniasis (PKDL) are usually extrapolated from those for visceral leishmaniasis (VL), but drug pharmacokinetics (PK) can differ due to disease-specific variations in absorption, distribution, and elimination. This study characterized PK differences in paromomycin and miltefosine between 109 PKDL and 264 VL patients from eastern Africa. VL patients showed 0.55-fold (95%CI: 0.41-0.74) lower capacity for paromomycin saturable reabsorption in renal tubules, and required a 1.44-fold (1.23-1.71) adjustment when relating renal clearance to creatinine-based eGFR. Miltefosine bioavailability in VL patients was lowered by 69% (62-76) at treatment start. Comparing PKDL to VL patients on the same regimen, paromomycin plasma exposures were 0.74-0.87-fold, while miltefosine exposure until the end of treatment day was 1.4-fold. These pronounced PK differences between PKDL and VL patients in eastern Africa highlight the challenges of directly extrapolating dosing regimens from one leishmaniasis presentation to another.
In Southeast Asia, treatment is recommended for all patients with post-kala-azar dermal leishmaniasis (PKDL). Adherence to the first-line regimen, twelve weeks of miltefosine (MF), is low and ocular toxicity has been observed with this exposure period. We assessed the safety and efficacy of two shorter-course treatments: liposomal amphotericin B (LAmB) alone and combined with MF.
METHODOLOGY/PRINCIPAL FINDINGS
An open-label, phase II, randomized, parallel-arm, non-comparative trial was conducted in patients with parasitologically confirmed PKDL, 6 to ≤60 years. Patients were assigned to 20 mg/kg LAmB (total dose, in five injections over 15 days) alone or combined with allometric MF (3 weeks). The primary endpoint was definitive cure at 12 months, defined as complete resolution of papular and nodular lesions and >80% re-pigmentation of macular lesions. Definitive cure at 24 months was a secondary efficacy endpoint. 118/126 patients completed the trial. Definitive cure at 12 months was observed in 29% (18/63) patients receiving LAmB and 30% (19/63) receiving LAmB/MF (mITT), increasing to 58% and 66%, respectively, at 24 months. Most lesions had resolved/improved at 12 and 24 months for patients receiving LAmB (90%, 83%) and LAmB/MF (85%, 88%) by qualitative assessment. One death, unrelated to study drugs, was reported; no study drug-related serious adverse events were observed. The most frequent adverse drug reactions were MF-related vomiting and nausea, and LAmB-related hypokalaemia and infusion reactions. Most adverse events were mild; no ocular adverse events occurred.
CONCLUSIONS/SIGNIFICANCE
Both regimens are suitably safe and efficacious alternatives to long-course MF for PKDL in South Asia.
Visceral leishmaniasis (VL) is a neglected tropical disease prevalent in populations affected by poverty, war, and famine. Without effective treatment, death is the norm. Prognostic models, as used by Médecins Sans Frontières (MSF) in East Africa, are used to identify high-risk patients for intensive management, including hospital admission, treatment with liposomal amphotericin B, broad-spectrum antibiotics, and blood transfusions. We provide a comprehensive and objective resource for policymakers, healthcare providers, and investigators, by identifying, summarising, and appraising the available prognostic models predicting clinical outcomes in patients with VL.
METHODS
We performed a systematic review of published studies that developed, validated, or updated models predicting future clinical outcomes in patients diagnosed with VL. We searched five bibliographic databases (Ovid Embase, Ovid MEDLINE, Web of Science Core Collection, SciELO, and LILACS) on March 1, 2023, for papers published from database inception, with no language restriction. Screening, data extraction, and risk of bias assessment were performed in duplicate. This study is registered with PROSPERO (ID: CRD42023417226).
RESULTS
Eight prognostic model studies, published between 2003 and 2021, were identified describing 12 prognostic model developments and 19 external validations. Nine models were developed in Brazil and three in East Africa by MSF investigators (two developed in South Sudan and one in Ethiopia). In-hospital mortality was the outcome for all but two Brazilian models, which predicted registry-reported mortality. Three models were developed exclusively in adolescents or children. Risk of bias was assessed as high for all model evaluations. Model overfitting due to small sample sizes, leading to optimistic model performance measures and exaggerated risk estimates, was identified for all but one model development. Only half of the presented risk scores were reproducible by following the authors’ methodology.
CONCLUSION
A poorly developed model can result in inaccurate risk estimation, potentially leading to harmful and inequitable decision making. With half of all risk scores incorrectly calculated, and a high risk of bias identified across all model evaluations, caution must be exercised when using these models to guide patient management. In the first systematic review of VL prognostic models, we show that no models predicted treatment failure and relapse, and despite South Asia representing the highest VL burden before 2010, no models were developed in this population. These represent important evidence gaps, which should be prioritised when developing new models. Using the Infectious Diseases Data Observatory repository of VL individual patient data from clinical trials, we are currently building a prognostic model for VL relapse in South Asia, which we hope to serve the ongoing elimination campaign.
Visceral leishmaniasis (VL) is a parasitic disease with an estimated 30,000 new cases occurring annually. Despite anaemia being a common haematological manifestation of VL, the evolution of different haematological characteristics following treatment remains poorly understood. An individual participant data meta-analysis (IPD-MA) is planned to characterise the haematological dynamics in patients with VL.
METHODS AND ANALYSIS
The Infectious Diseases Data Observatory (IDDO) VL data platform is a global repository of IPD from therapeutic studies identified through a systematic search of published literature (PROSPERO registration: CRD42021284622). The platform currently holds datasets from clinical trials standardised to a common data format. Corresponding authors and principal investigators of the studies indexed in the IDDO VL data platform meeting the eligibility criteria for inclusion were invited to be part of the collaborative IPD-MA. Mixed-effects multivariable regression models will be constructed to identify determinants of haematological parameters by taking clustering within study sites into account.
ETHICS AND DISSEMINATION
This IPD-MA meets the criteria for waiver of ethical review as defined by the Oxford Tropical Research Ethics Committee (OxTREC) granted to IDDO, as the research consists of secondary analysis of existing anonymised data (exempt granted on 29 March 2023, OxTREC REF: IDDO). Ethics approval was granted by the ICMR-Rajendra Memorial Research Institute of Medical Sciences ethics committee (letter no.: RMRI/EC/30/2022) on 4 July 2022. The results of this analysis will be disseminated at conferences, the IDDO website and peer-reviewed publications in open-access journals. The findings of this research will be critically important for control programmes at regional and global levels, policymakers and groups developing new VL treatments.
Visceral leishmaniasis (VL) is a parasitic disease with an estimated 30 000 new cases occurring annually. There is an observed variation in the efficacy of the current first-line therapies across different regions. Such heterogeneity could be a function of host, parasite and drug factors. An individual participant data meta-analysis (IPD-MA) is planned to explore the determinants of treatment outcomes.
METHODS AND ANALYSIS
The Infectious Diseases Data Observatory (IDDO) VL living systematic review (IDDO VL LSR) library is an open-access resource of all published therapeutic studies in VL since 1980. For this current review, the search includes all clinical trials published between 1 January 1980 and 2 May 2021. Studies indexed in the IDDO VL LSR library were screened for eligibility for inclusion in this IPD-MA. Corresponding authors and principal investigators of the studies meeting the eligibility criteria for inclusion were invited to be part of the collaborative IPD-MA. Authors agreeing to participate in this collaborative research were requested to share the IPD using the IDDO VL data platform. The IDDO VL data platform currently holds data sets from clinical trials standardised to a common data format and provides a unique opportunity to identify host, parasite and drug determinants of treatment outcomes. Multivariable regression models will be constructed to identify determinants of therapeutic outcomes using generalised linear mixed-effects models accounting for within-study site clustering.
ETHICS AND DISSEMINATION
This IPD-MA meets the criteria for waiver of ethical review as defined by the Oxford Tropical Research Ethics Committee (OxTREC) granted to IDDO, as the research consists of secondary analysis of existing anonymised data (Exempt granted on 29 March 2023, OxTREC REF: IDDO) Ethics approval was granted by the ICMR-Rajendra Memorial Research Institute of Medical Sciences ethics committee (Letter no: RMRI/EC/30/2022) on 04-07-2022. The results of this IPD-MA will be disseminated at conferences, IDDO website and any peer-reviewed publications. All publications will be open source. Findings of this research will be critically important for the control programmes at regional/global levels, policy makers and groups developing new VL treatments.
To improve visceral leishmaniasis (VL) treatment in Eastern Africa, 14- and 28-day combination regimens of paromomycin plus allometrically dosed miltefosine were evaluated. As the majority of patients affected by VL are children, adequate paediatric exposure to miltefosine and paromomycin is key to ensuring good treatment response.
METHODS
Pharmacokinetic data were collected in a multicentre randomized controlled trial in VL patients from Kenya, Sudan, Ethiopia and Uganda. Patients received paromomycin (20 mg/kg/day for 14 days) plus miltefosine (allometric dose for 14 or 28 days). Population pharmacokinetic models were developed. Adequacy of exposure and target attainment of paromomycin and miltefosine were evaluated in children and adults.
RESULTS
Data from 265 patients (59% =12 years) were available for this pharmacokinetic analysis. Paromomycin exposure was lower in paediatric patients compared with adults [median (IQR) end-of-treatment AUC0–24h 187 (162–203) and 242 (217–328) µg·h/mL, respectively], but were both within the IQR of end-of-treatment exposure in Kenyan and Sudanese adult patients from a previous study. Cumulative miltefosine end-of-treatment exposure in paediatric patients and adults [AUCD0–28 517 (464–552) and 524 (456–567) µg·day/mL, respectively] and target attainment [time above the in vitro susceptibility value EC90 27 (25–28) and 30 (28–32) days, respectively] were comparable to previously observed values in adults.
CONCLUSIONS
Paromomycin and miltefosine exposure in this new combination regimen corresponded to the desirable levels of exposure, supporting the implementation of the shortened 14 day combination regimen. Moreover, the lack of a clear exposure–response and exposure–toxicity relationship indicated adequate exposure within the therapeutic range in the studied population, including paediatric patients.