logo
Science Portal
Copyright © Médecins Sans Frontières
v2.1.5209.produseast1
About MSF Science Portal
About
Contact Us
Frequently Asked Questions (FAQs)
Privacy Policy
Terms of Use
Copyright © Médecins Sans Frontières
v2.1.5209.produseast1
Journal Article
|Research

Abundance of megalin and Dab2 is reduced in syncytiotrophoblast during placental malaria, which may contribute to low birth weight

Lybbert J, Gullingsrud J, Chesnokov O, Turyakira E, Dhorda M, Guerin PJ, Piola P, Muehlenbachs A, Oleinikov AV

Similar Content
Loading...
Loading...
Loading...
Abundance of megalin and Dab2 is reduced in syncytiotrophoblast during placental malaria, which may contribute to low birth weight | Journal Article / Research | MSF Science Portal
Abstract
Placental malaria caused by Plasmodium falciparum contributes to ~200,000 child deaths annually, mainly due to low birth weight (LBW). Parasitized erythrocyte sequestration and consequent inflammation in the placenta are common attributes of placental malaria. The precise molecular details of placental changes leading to LBW are still poorly understood. We hypothesized that placental malaria may disturb maternofetal exchange of vitamins, lipids, and hormones mediated by the multi-ligand (n ~ 50) scavenging/signaling receptor megalin, which is abundantly expressed in placenta but was not previously analyzed in pregnancy outcomes. We studied abundance of megalin and its intracellular adaptor protein Dab2 by immunofluorescence microscopy in placental biopsies from Ugandan women with (n = 8) and without (n = 20) active placental malaria. We found that: (a) abundances of both megalin (p = 0.01) and Dab2 (p = 0.006) were significantly reduced in brush border of syncytiotrophoblast of infected placentas; (b) amounts of megalin and Dab2 were strongly correlated (Spearman's r = 0.53, p = 0.003); (c) abundances of megalin and Dab2 (p = 0.046) were reduced in infected placentas from women with LBW deliveries. This study provides first evidence that placental malaria infection is associated with reduced abundance of megalin transport/signaling system and indicate that these changes may contribute to the pathology of LBW.

Countries

Uganda

Subject Area

women's healthmalaria

Languages

English
DOI
10.1038/srep24508
Published Date
13 Apr 2016
PubMed ID
27072056
Journal
Scientific Reports
Volume | Issue | Pages
Volume 6, Pages 24508
Issue Date
2016-04-13
Dimensions Badge