Journal Article > ResearchFull Text
Sci Rep. 2023 October 13; Volume 13 (Issue 1); 17363.; DOI:10.1038/s41598-023-44457-0
Acford-Palmer H, Campos M, Bandibabone JB, N’Do S, Bantuzeko C, et al.
Sci Rep. 2023 October 13; Volume 13 (Issue 1); 17363.; DOI:10.1038/s41598-023-44457-0
Vector control strategies have been successful in reducing the number of malaria cases and deaths globally, but the spread of insecticide resistance represents a significant threat to disease control. Insecticide resistance has been reported across Anopheles (An.) vector populations, including species within the An. funestus group. These mosquitoes are responsible for intense malaria transmission across sub-Saharan Africa, including in the Democratic Republic of the Congo (DRC), a country contributing > 12% of global malaria infections and mortality events. To support the continuous efficacy of vector control strategies, it is essential to monitor insecticide resistance using molecular surveillance tools. In this study, we developed an amplicon sequencing (“Amp-seq”) approach targeting An. funestus, and using multiplex PCR, dual index barcoding, and next-generation sequencing for high throughput and low-cost applications. Using our Amp-seq approach, we screened 80 An. funestus field isolates from the DRC across a panel of nine genes with mutations linked to insecticide resistance (ace-1, CYP6P4, CYP6P9a, GSTe2, vgsc, and rdl) and mosquito speciation (cox-1, mtND5, and ITS2). Amongst the 18 non-synonymous mutations detected, was N485I, in the ace-1 gene associated with carbamate resistance. Overall, our panel represents an extendable and much-needed method for the molecular surveillance of insecticide resistance in An. funestus populations.
Journal Article > ResearchFull Text
Sci Rep. 2019 May 13; Volume 9 (Issue 1); 7314.; DOI:10.1038/s41598-019-43785-4
Nouhin J, Iwamoto M, Prak S, Doussett JP, Phon K, et al.
Sci Rep. 2019 May 13; Volume 9 (Issue 1); 7314.; DOI:10.1038/s41598-019-43785-4
In Cambodia, little epidemiological data of hepatitis C virus (HCV) is available. All previous studies were limited to only small or specific populations. In the present study, we performed a characterization of HCV genetic diversity based on demography, clinical data, and phylogenetic analysis of HCV non-structural 5B (NS5B) sequences belonging to a large cohort of patients (n = 3,133) coming from majority part of Cambodia between September 2016 and December 2017. The phylogenetic analysis revealed that HCV genotype 1 and 6 were the most predominant and sharing equal proportions (46%). The remaining genotypes were genotype 2 (4.3%) and unclassified variants (3.6%). Among genotype 1, subtype 1b was the most prevalent subtype accounting for 94%. Within genotype 6, we observed a high degree of diversity and the most common viral subtypes were 6e (44%) and 6r (23%). This characteristic points to the longstanding history of HCV in Cambodia. Geographic specificity of viral genotype was not observed. Risks of HCV infection were mainly associated with experience of an invasive medical procedure (64.7%), having partner with HCV (19.5%), and blood transfusion (9.9%). In addition, all of these factors were comparable among different HCV genotypes. All these features define the specificity of HCV epidemiology in Cambodia.
Journal Article > ResearchFull Text
Antimicrob Agents Chemother. 2009 May 26; Volume 53 (Issue 8); 3353-3356.; DOI:10.1128/AAC.00050-09
Feuerriegel S, Cox HS, Zarkua N, Karimovich HA, Braker K, et al.
Antimicrob Agents Chemother. 2009 May 26; Volume 53 (Issue 8); 3353-3356.; DOI:10.1128/AAC.00050-09
The rapid detection of Mycobacterium tuberculosis isolates resistant to second-line drugs is crucial for the institution of appropriate treatment regimens as early as possible. Although molecular methods have successfully been used for the rapid detection of resistance to first-line drugs, there are limited data on mutations that confer resistance to second-line drugs. To address this question, we analyzed Mycobacterium tuberculosis strains resistant to ofloxacin (n = 26) and to capreomycin and/or amikacin (n = 48) from Uzbekistan for variations in target genes (gyrA, gyrB, rrs, and tlyA). Strains susceptible to ofloxacin (n = 49) and capreomycin and/or amikacin (n = 39) were included as controls. Mutations in gyrA or gyrB were found in 96% (25/26 strains) of the ofloxacin-resistant strains, while none of the susceptible strains displayed mutations in those two genes. The most common mutation occurred in gyrA at codon 94 (17/26 strains [65.4%]), followed by mutations at codons 90 and 91. Two strains showed a mutation in gyrB, at codons 485 and 543, respectively; both mutations have not been reported previously. The most frequent mutation in strains resistant to both amikacin and capreomycin was A1401G in rrs (34/40 strains [85.0%]). Three strains had mutations in tlyA, of which two (at codons 18 and 118) were associated with resistance to capreomycin alone. Overall, none of the 10 resistant strains (5 amikacin-resistant and capreomycin-susceptible strains) and none of the 39 susceptible control strains had mutations in the genes investigated. Our results clearly demonstrate the potential of sequence analyses of short regions of relatively few target genes for the rapid detection of resistance to second-line drugs among strains isolated from patients undergoing treatment for multidrug-resistant tuberculosis. The mechanisms that confer amikacin resistance in this setting remain unclear.
Journal Article > ResearchFull Text
Nat Genet. 2016 October 31; Volume 48 (Issue 12); 1535-1543.; DOI: 10.1038/ng.3704
Stucki D, Brites D, Jeljeli L, Coscolla M, Liu Q, et al.
Nat Genet. 2016 October 31; Volume 48 (Issue 12); 1535-1543.; DOI: 10.1038/ng.3704
Generalist and specialist species differ in the breadth of their ecological niches. Little is known about the niche width of obligate human pathogens. Here we analyzed a global collection of Mycobacterium tuberculosis lineage 4 clinical isolates, the most geographically widespread cause of human tuberculosis. We show that lineage 4 comprises globally distributed and geographically restricted sublineages, suggesting a distinction between generalists and specialists. Population genomic analyses showed that, whereas the majority of human T cell epitopes were conserved in all sublineages, the proportion of variable epitopes was higher in generalists. Our data further support a European origin for the most common generalist sublineage. Hence, the global success of lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human migration.
Journal Article > LetterFull Text
Int J Tuberc Lung Dis. 2022 December 1; Volume 26 (Issue 12); 1180-1182.; DOI:10.5588/ijtld.22.0335
Memani B, Furin J, Cox HS, Reuter A
Int J Tuberc Lung Dis. 2022 December 1; Volume 26 (Issue 12); 1180-1182.; DOI:10.5588/ijtld.22.0335
Conference Material > Video (talk)
Luquero FJ
Epicentre Scientific Day Paris 2019. 2019 June 13
Journal Article > ResearchFull Text
Microbiol Resour Announc. 2021 March 11; Volume 10 (Issue 10); e00093-21.; DOI:10.1128/MRA.00093-21
Njouom R, Sadeuh-Mba SA, Tchatcheung J, Diagne MM, Dia N, et al.
Microbiol Resour Announc. 2021 March 11; Volume 10 (Issue 10); e00093-21.; DOI:10.1128/MRA.00093-21
We describe the coding-complete genome sequence of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain obtained in Cameroon from a 58-year-old French patient who arrived from France on 24 February 2020. Phylogenetic analysis showed that this virus, named hCoV-19/Cameroon/1958-CMR-YAO/2020, belongs to lineage B.1.5 and is closely related to an isolate from France.
Journal Article > ResearchFull Text
Sci Rep. 2023 December 8; Volume 13 (Issue 1); 21654.; DOI:10.1038/s41598-023-48773-3
Fokam J, Essomba RG, Njouom R, Okomo MCA, Eyangoh S, et al.
Sci Rep. 2023 December 8; Volume 13 (Issue 1); 21654.; DOI:10.1038/s41598-023-48773-3
While the SARS-CoV-2 dynamic has been described globally, there is a lack of data from Sub-Saharan Africa. We herein report the dynamics of SARS-CoV-2 lineages from March 2020 to March 2022 in Cameroon. Of the 760 whole-genome sequences successfully generated by the national genomic surveillance network, 74% were viral sub-lineages of origin and non-variants of concern, 15% Delta, 6% Omicron, 3% Alpha and 2% Beta variants. The pandemic was driven by SARS-CoV-2 lineages of origin in wave 1 (16 weeks, 2.3% CFR), the Alpha and Beta variants in wave 2 (21 weeks, 1.6% CFR), Delta variants in wave 3 (11 weeks, 2.0% CFR), and omicron variants in wave 4 (8 weeks, 0.73% CFR), with a declining trend over time (p = 0.01208). Even though SARS-CoV-2 heterogeneity did not seemingly contribute to the breadth of transmission, the viral lineages of origin and especially the Delta variants appeared as drivers of COVID-19 severity in Cameroon.
Journal Article > ResearchFull Text
Malar J. 2016 September 5; Volume 15 (Issue 1); 452.; DOI:10.1186/s12936-016-1503-3
Otienoburu SD, Maiga-Ascofare O, Schramm B, Jullien V, Jones JJ, et al.
Malar J. 2016 September 5; Volume 15 (Issue 1); 452.; DOI:10.1186/s12936-016-1503-3
BACKGROUND
Plasmodium falciparum uncomplicated malaria can successfully be treated with an artemisinin-based combination therapy (ACT). However resistance is spreading to the different ACT compounds; the artemisinin derivative and the partner drug. Studies of P. falciparum polymorphisms associated with drug resistance can provide a useful tool to track resistance and guide treatment policy as well as an in-depth understanding of the development and spread of resistance.
METHODS
The role of P. falciparum molecular markers in selection of reinfections was assessed in an efficacy trial comparing artesunate-amodiaquine fixed-dose combination with artemether-lumefantrine to treat malaria in Nimba County, Liberia 2008-2009. P. falciparum polymorphisms in pfcrt 76, pfmdr1 86, 184 and 1246, and pfmrp1 876 and 1466 were analysed by PCR-RFLP and pyrosequencing.
RESULTS
High baseline prevalence of pfmdr1 1246Y was found in Nimba county (38 %). Pfmdr1 1246Y and pfmdr1 86+184+1246 haplotypes NYY and YYY were selected in reinfections in the artesunate-amodiaquine arm and pfcrt K76, pfmdr1 N86 and pfmdr1 haplotype NFD were selected in artemether-lumefantrine reinfections. Parasites harbouring pfmdr1 1246Y could reinfect earlier after treatment with artesunate-amodiaquine and parasites carrying pfmdr1 N86 could reinfect at higher lumefantrine concentrations in patients treated with artemether-lumefantrine.
CONCLUSIONS
Although treatment is highly efficacious, selection of molecular markers in reinfections could indicate a decreased sensitivity or tolerance of parasites to the current treatments and the baseline prevalence of molecular markers should be closely monitored. Since individual drug levels and the day of reinfection were demonstrated to be key determinants for selection of reinfections, this data needs to be collected and taken into account for accurate evaluation of molecular markers for anti-malarial treatments.
The protocol for the clinical trial was registered with Current Controlled Trials, under the Identifier Number ISRCTN51688713 on 9 October 2008.
Plasmodium falciparum uncomplicated malaria can successfully be treated with an artemisinin-based combination therapy (ACT). However resistance is spreading to the different ACT compounds; the artemisinin derivative and the partner drug. Studies of P. falciparum polymorphisms associated with drug resistance can provide a useful tool to track resistance and guide treatment policy as well as an in-depth understanding of the development and spread of resistance.
METHODS
The role of P. falciparum molecular markers in selection of reinfections was assessed in an efficacy trial comparing artesunate-amodiaquine fixed-dose combination with artemether-lumefantrine to treat malaria in Nimba County, Liberia 2008-2009. P. falciparum polymorphisms in pfcrt 76, pfmdr1 86, 184 and 1246, and pfmrp1 876 and 1466 were analysed by PCR-RFLP and pyrosequencing.
RESULTS
High baseline prevalence of pfmdr1 1246Y was found in Nimba county (38 %). Pfmdr1 1246Y and pfmdr1 86+184+1246 haplotypes NYY and YYY were selected in reinfections in the artesunate-amodiaquine arm and pfcrt K76, pfmdr1 N86 and pfmdr1 haplotype NFD were selected in artemether-lumefantrine reinfections. Parasites harbouring pfmdr1 1246Y could reinfect earlier after treatment with artesunate-amodiaquine and parasites carrying pfmdr1 N86 could reinfect at higher lumefantrine concentrations in patients treated with artemether-lumefantrine.
CONCLUSIONS
Although treatment is highly efficacious, selection of molecular markers in reinfections could indicate a decreased sensitivity or tolerance of parasites to the current treatments and the baseline prevalence of molecular markers should be closely monitored. Since individual drug levels and the day of reinfection were demonstrated to be key determinants for selection of reinfections, this data needs to be collected and taken into account for accurate evaluation of molecular markers for anti-malarial treatments.
The protocol for the clinical trial was registered with Current Controlled Trials, under the Identifier Number ISRCTN51688713 on 9 October 2008.
Journal Article > ResearchFull Text
EBioMedicine. 2017 March 19; Volume 18; 225-235.; DOI:10.1016/j.ebiom.2017.03.024
Rhee SY, Varghese B, Holmes SP, Van Zyl GU, Steegen K, et al.
EBioMedicine. 2017 March 19; Volume 18; 225-235.; DOI:10.1016/j.ebiom.2017.03.024
Tenofovir disoproxil fumarate (TDF) genotypic resistance defined by K65R/N and/or K70E/Q/G occurs in 20% to 60% of individuals with virological failure (VF) on a WHO-recommended TDF-containing first-line regimen. However, the full spectrum of reverse transcriptase (RT) mutations selected in individuals with VF on such a regimen is not known. To identify TDF regimen-associated mutations (TRAMs), we compared the proportion of each RT mutation in 2873 individuals with VF on a WHO-recommended first-line TDF-containing regimen to its proportion in a cohort of 50,803 antiretroviral-naïve individuals. To identify TRAMs specifically associated with TDF-selection pressure, we compared the proportion of each TRAM to its proportion in a cohort of 5805 individuals with VF on a first-line thymidine analog-containing regimen. We identified 83 TRAMs including 33 NRTI-associated, 40 NNRTI-associated, and 10 uncommon mutations of uncertain provenance. Of the 33 NRTI-associated TRAMs, 12 - A62V, K65R/N, S68G/N/D, K70E/Q/T, L74I, V75L, and Y115F - were more common among individuals receiving a first-line TDF-containing compared to a first-line thymidine analog-containing regimen. These 12 TDF-selected TRAMs will be important for monitoring TDF-associated transmitted drug-resistance and for determining the extent of reduced TDF susceptibility in individuals with VF on a TDF-containing regimen.