Journal Article > Meta-AnalysisFull Text
Eur Respir J. 2020 March 20; Volume 55 (Issue 3); 1901467.; DOI:10.1183/13993003.01467-2019
Abidi S, Achar J, Assao Neino MM, Bang D, Benedetti A, et al.
Eur Respir J. 2020 March 20; Volume 55 (Issue 3); 1901467.; DOI:10.1183/13993003.01467-2019
We sought to compare the effectiveness of two World Health Organization (WHO)-recommended regimens for the treatment of rifampin- or multidrug-resistant (RR/MDR) tuberculosis (TB): a standardised regimen of 9-12 months (the "shorter regimen") and individualised regimens of ≥20 months ("longer regimens").
We collected individual patient data from observational studies identified through systematic reviews and a public call for data. We included patients meeting WHO eligibility criteria for the shorter regimen: not previously treated with second-line drugs, and with fluoroquinolone- and second-line injectable agent-susceptible RR/MDR-TB. We used propensity score matched, mixed effects meta-regression to calculate adjusted odds ratios and adjusted risk differences (aRDs) for failure or relapse, death within 12 months of treatment initiation and loss to follow-up.
We included 2625 out of 3378 (77.7%) individuals from nine studies of shorter regimens and 2717 out of 13 104 (20.7%) individuals from 53 studies of longer regimens. Treatment success was higher with the shorter regimen than with longer regimens (pooled proportions 80.0% versus 75.3%), due to less loss to follow-up with the former (aRD -0.15, 95% CI -0.17- -0.12). The risk difference for failure or relapse was slightly higher with the shorter regimen overall (aRD 0.02, 95% CI 0-0.05) and greater in magnitude with baseline resistance to pyrazinamide (aRD 0.12, 95% CI 0.07-0.16), prothionamide/ethionamide (aRD 0.07, 95% CI -0.01-0.16) or ethambutol (aRD 0.09, 95% CI 0.04-0.13).
In patients meeting WHO criteria for its use, the standardised shorter regimen was associated with substantially less loss to follow-up during treatment compared with individualised longer regimens and with more failure or relapse in the presence of resistance to component medications. Our findings support the need to improve access to reliable drug susceptibility testing.
We collected individual patient data from observational studies identified through systematic reviews and a public call for data. We included patients meeting WHO eligibility criteria for the shorter regimen: not previously treated with second-line drugs, and with fluoroquinolone- and second-line injectable agent-susceptible RR/MDR-TB. We used propensity score matched, mixed effects meta-regression to calculate adjusted odds ratios and adjusted risk differences (aRDs) for failure or relapse, death within 12 months of treatment initiation and loss to follow-up.
We included 2625 out of 3378 (77.7%) individuals from nine studies of shorter regimens and 2717 out of 13 104 (20.7%) individuals from 53 studies of longer regimens. Treatment success was higher with the shorter regimen than with longer regimens (pooled proportions 80.0% versus 75.3%), due to less loss to follow-up with the former (aRD -0.15, 95% CI -0.17- -0.12). The risk difference for failure or relapse was slightly higher with the shorter regimen overall (aRD 0.02, 95% CI 0-0.05) and greater in magnitude with baseline resistance to pyrazinamide (aRD 0.12, 95% CI 0.07-0.16), prothionamide/ethionamide (aRD 0.07, 95% CI -0.01-0.16) or ethambutol (aRD 0.09, 95% CI 0.04-0.13).
In patients meeting WHO criteria for its use, the standardised shorter regimen was associated with substantially less loss to follow-up during treatment compared with individualised longer regimens and with more failure or relapse in the presence of resistance to component medications. Our findings support the need to improve access to reliable drug susceptibility testing.
Journal Article > ReviewAbstract
J Infect Dis. 2012 April 10; Volume 205 (Issue suppl_2); DOI:10.1093/infdis/jir860
McNerney R, Maeurer M, Abubakar I, Marais BJ, McHugh TD, et al.
J Infect Dis. 2012 April 10; Volume 205 (Issue suppl_2); DOI:10.1093/infdis/jir860
Tuberculosis is unique among the major infectious diseases in that it lacks accurate rapid point-of-care diagnostic tests. Failure to control the spread of tuberculosis is largely due to our inability to detect and treat all infectious cases of pulmonary tuberculosis in a timely fashion, allowing continued Mycobacterium tuberculosis transmission within communities. Currently recommended gold-standard diagnostic tests for tuberculosis are laboratory based, and multiple investigations may be necessary over a period of weeks or months before a diagnosis is made. Several new diagnostic tests have recently become available for detecting active tuberculosis disease, screening for latent M. tuberculosis infection, and identifying drug-resistant strains of M. tuberculosis. However, progress toward a robust point-of-care test has been limited, and novel biomarker discovery remains challenging. In the absence of effective prevention strategies, high rates of early case detection and subsequent cure are required for global tuberculosis control. Early case detection is dependent on test accuracy, accessibility, cost, and complexity, but also depends on the political will and funder investment to deliver optimal, sustainable care to those worst affected by the tuberculosis and human immunodeficiency virus epidemics. This review highlights unanswered questions, challenges, recent advances, unresolved operational and technical issues, needs, and opportunities related to tuberculosis diagnostics.
Journal Article > ReviewFull Text
PLOS Med. 2016 March 2; Volume 13 (Issue 3); e1001965.; DOI:10.1371/journal.pmed.1001965
Lienhardt C, Lonnroth K, Menzies D, Balasegaram M, Chakaya JM, et al.
PLOS Med. 2016 March 2; Volume 13 (Issue 3); e1001965.; DOI:10.1371/journal.pmed.1001965
Journal Article > Short ReportFull Text
J Infect Dis. 2015 April 1; Volume 211 (Issue suppl_2); DOI:10.1093/infdis/jiu821
Denkinger CM, Kik S, Cirillo DM, Casenghi M, Shinnick T, et al.
J Infect Dis. 2015 April 1; Volume 211 (Issue suppl_2); DOI:10.1093/infdis/jiu821
To accelerate the fight against tuberculosis, major diagnostic challenges need to be addressed urgently. Post-2015 targets are unlikely to be met without the use of novel diagnostics that are more accurate and can be used closer to where patients first seek care in affordable diagnostic algorithms. This article describes the efforts by the stakeholder community that led to the identification of the high-priority diagnostic needs in tuberculosis. Subsequently target product profiles for the high-priority diagnostic needs were developed and reviewed in a World Health Organization (WHO)-led consensus meeting. The high-priority diagnostic needs included (1) a sputum-based replacement test for smear-microscopy; (2) a non-sputum-based biomarker test for all forms of tuberculosis, ideally suitable for use at levels below microscopy centers; (3) a simple, low cost triage test for use by first-contact care providers as a rule-out test, ideally suitable for use by community health workers; and (4) a rapid drug susceptibility test for use at the microscopy center level. The developed target product profiles, along with complimentary work presented in this supplement, will help to facilitate the interaction between the tuberculosis community and the diagnostics industry with the goal to lead the way toward the post-2015 global tuberculosis targets.