Journal Article > ResearchFull Text
EBioMedicine. 2024 March 1; Volume 101; 105004.; DOI:10.1016/j.ebiom.2024.105004
Hardy L, Vermoesen T, Genbrugge E, Natale A, Franquesa C, et al.
EBioMedicine. 2024 March 1; Volume 101; 105004.; DOI:10.1016/j.ebiom.2024.105004
BACKGROUND
Bloodstream infections (BSI) pose a significant threat due to high mortality rates and the challenges posed by antimicrobial resistance (AMR). In 2019, an estimated 4.95 million deaths were linked to bacterial AMR. The highest impact was seen in resource-limited settings (RLS). For diagnosis of BSI, performant continuously-monitoring blood culture systems (CMBCS) have been optimized. However, in RLS, the implementation of CMBCS is hindered by budget constraints and unsuitable environmental conditions. Manufacturers from growing economies are currently producing affordable in vitro diagnostics, which could fill the gap in capacity, but so far these are not established outside their domestic markets.
METHODS
This study evaluated the performance, usability, and interchangeability of Chinese CMBCS in a laboratory setting using simulated blood cultures with a panel of 20 BSI-associated strains. Four systems were selected for the assessment: Autobio BC60, Mindray TDR60, Scenker Labstar50, and DL-biotech DL-60.
FINDINGS
Overall, all evaluated CMBCS demonstrated good performance with high yield (96.7-100%) and specificity (97.5-100%), comparable to the reference system (bioMérieux 3D). In addition, when used as "manual" blood cultures in a conventional incubator with visual growth detection, performance was also satisfactory: yield was between 90 and 100% and specificity was 100% for all BCBs. Both the CMBCS and the BCBs were easy to use and lot-to-lot variability in BCBs was minimal. The interchangeability testing indicated that the BCBs from different brands (all except Scenker) were compatible with the various automates, further highlighting the potential for a harmonized "universal BCB."
INTERPRETATION
Based on this in vitro study, we recommend the use of these systems in settings with challenging environments and limited resources. The Autobio system performed best for automatic detection and DL-Biotech BCBs for manual cultures respectively (combination of performance, price, usability). The appropriateness for use in RLS should still be confirmed in a field study.
Bloodstream infections (BSI) pose a significant threat due to high mortality rates and the challenges posed by antimicrobial resistance (AMR). In 2019, an estimated 4.95 million deaths were linked to bacterial AMR. The highest impact was seen in resource-limited settings (RLS). For diagnosis of BSI, performant continuously-monitoring blood culture systems (CMBCS) have been optimized. However, in RLS, the implementation of CMBCS is hindered by budget constraints and unsuitable environmental conditions. Manufacturers from growing economies are currently producing affordable in vitro diagnostics, which could fill the gap in capacity, but so far these are not established outside their domestic markets.
METHODS
This study evaluated the performance, usability, and interchangeability of Chinese CMBCS in a laboratory setting using simulated blood cultures with a panel of 20 BSI-associated strains. Four systems were selected for the assessment: Autobio BC60, Mindray TDR60, Scenker Labstar50, and DL-biotech DL-60.
FINDINGS
Overall, all evaluated CMBCS demonstrated good performance with high yield (96.7-100%) and specificity (97.5-100%), comparable to the reference system (bioMérieux 3D). In addition, when used as "manual" blood cultures in a conventional incubator with visual growth detection, performance was also satisfactory: yield was between 90 and 100% and specificity was 100% for all BCBs. Both the CMBCS and the BCBs were easy to use and lot-to-lot variability in BCBs was minimal. The interchangeability testing indicated that the BCBs from different brands (all except Scenker) were compatible with the various automates, further highlighting the potential for a harmonized "universal BCB."
INTERPRETATION
Based on this in vitro study, we recommend the use of these systems in settings with challenging environments and limited resources. The Autobio system performed best for automatic detection and DL-Biotech BCBs for manual cultures respectively (combination of performance, price, usability). The appropriateness for use in RLS should still be confirmed in a field study.
Journal Article > LetterFull Text
Nature. 2015 June 17; Volume 524 (Issue 7563); 97-101.; DOI:10.1038/nature14594
Carroll MW, Matthews DA, Hiscox JA, Elmore MJ, Pollakis G, et al.
Nature. 2015 June 17; Volume 524 (Issue 7563); 97-101.; DOI:10.1038/nature14594
West Africa is currently witnessing the most extensive Ebola virus (EBOV) outbreak so far recorded. Until now, there have been 27,013 reported cases and 11,134 deaths. The origin of the virus is thought to have been a zoonotic transmission from a bat to a twoyear-old boy in December 2013 (ref. 2). From this index case the virus was spread by human-to-human contact throughout Guinea, Sierra Leone and Liberia. However, the origin of the particular virus in each country and time of transmission is not known and currently relies on epidemiological analysis, which may be unreliable owing to the difficulties of obtaining patient information. Here we trace the genetic evolution of EBOV in the current outbreak that has resulted in multiple lineages. Deep sequencing of 179 patient samples processed by the European Mobile Laboratory, the first diagnostics unit to be deployed to the epicentre of the outbreak in Guinea, reveals an epidemiological and evolutionary history of the epidemic from March 2014 to January 2015. Analysis of EBOV genome evolution has also benefited from a similar sequencing effort of patient samples from Sierra Leone. Our results confirm that the EBOV from Guinea moved into Sierra Leone, most likely in April or early May. The viruses of the Guinea/Sierra Leone lineage mixed around June/July 2014. Viral sequences covering August, September and October 2014 indicate that this lineage evolved independently within Guinea. These data can be used in conjunction with epidemiological information to test retrospectively the effectiveness of control measures, and provides an unprecedented window into the evolution of an ongoing viral haemorrhagic fever outbreak.