Journal Article > ResearchFull Text
CPT Pharmacometrics Syst Pharmacol. 2013 November 13; Volume 2 (Issue 11); e83.; DOI:10.1038/psp.2013.59
Kloprogge F, Piola P, Dhorda M, Muwanga S, Turyakira E, et al.
CPT Pharmacometrics Syst Pharmacol. 2013 November 13; Volume 2 (Issue 11); e83.; DOI:10.1038/psp.2013.59
Pregnancy alters the pharmacokinetic properties of many antimalarial compounds. The objective of this study was to evaluate the pharmacokinetic properties of lumefantrine in pregnant and nonpregnant women with uncomplicated Plasmodium falciparum malaria in Uganda after a standard fixed oral artemether-lumefantrine treatment. Dense venous (n = 26) and sparse capillary (n = 90) lumefantrine samples were drawn from pregnant patients. A total of 17 nonpregnant women contributed with dense venous lumefantrine samples. Lumefantrine pharmacokinetics was best described by a flexible absorption model with multiphasic disposition. Pregnancy and body temperature had a significant impact on the pharmacokinetic properties of lumefantrine. Simulations from the final model indicated 27% lower day 7 concentrations in pregnant women compared with nonpregnant women and a decreased median time of 0.92 and 0.42 days above previously defined critical concentration cutoff values (280 and 175 ng/ml, respectively). The standard artemether-lumefantrine dose regimen in P. falciparum malaria may need reevaluation in nonimmune pregnant women.
Journal Article > ResearchAbstract
PLOS One. 2012 January 1; Volume 7 (Issue 1); DOI:10.1371/journal.pone.0030281
Dhorda M, Piola P, Nyehangane D, Tumwebaze B, Nalusaji A, et al.
PLOS One. 2012 January 1; Volume 7 (Issue 1); DOI:10.1371/journal.pone.0030281
Abstract. Improved laboratory diagnosis is critical to reduce the burden of malaria in pregnancy. Peripheral blood smears appear less sensitive than Plasmodium falciparum histidine-rich protein 2-based rapid diagnostic tests (RDTs) for placental malaria infections in studies conducted at delivery. In this study, 81 women in Uganda in the second or third trimester of pregnancy were followed-up until delivery. At each visit, peripheral blood was tested by blood smear, RDT, and nested species-specific polymerase chain reaction (PCR). Sensitivity and specificity of the tests was calculated with PCR, which detected 22 infections of P. falciparum, as the gold standard. The sensitivity and specificity of blood smears were 36.4% (95% confidence interval [CI] = 18.0-59.2%) and 99.6% (95% CI = 97.7-100%), respectively. The corresponding values for RDT were 31.8% (95% CI = 14.7-54.9%) and 100% (95% CI = 98.3-100%). The RDTs could replace blood smears for diagnosis of malaria in pregnancy by virtue of their relative ease of use. Field-based sensitive tests for malaria in pregnancy are urgently needed.
Journal Article > ResearchFull Text
Malar J. 2012 April 30; Volume 11; 139.; DOI:10.1186/1475-2875-11-139
Van Malderen C, Van Geertruyden JP, Machevo S, Gonzalez R, Bassat Q, et al.
Malar J. 2012 April 30; Volume 11; 139.; DOI:10.1186/1475-2875-11-139
BACKGROUND
Malaria is a leading cause of mortality, particularly in sub-Saharan African children. Prompt and efficacious treatment is important as patients may progress within a few hours to severe and possibly fatal disease. Chlorproguanil-dapsone-artesunate (CDA) was a promising artemisinin-based combination therapy (ACT), but its development was prematurely stopped because of safety concerns secondary to its associated risk of haemolytic anaemia in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. The objective of the study was to assess whether CDA treatment and G6PD deficiency are risk factors for a post-treatment haemoglobin drop in African children <5 years of age with uncomplicated malaria.
METHODS
This case–control study was performed in the context of a larger multicentre randomized clinical trial comparing safety and efficacy of four different ACT in children with uncomplicated malaria. Children, who after treatment experienced a haemoglobin drop ≥2 g/dl (cases) within the first four days (days 0, 1, 2, and 3), were compared with those without an Hb drop (controls). Cases and controls were matched for study site, sex, age and baseline haemoglobin measurements. Data were analysed using a conditional logistic regression model.
RESULTS
G6PD deficiency prevalence, homo- or hemizygous, was 8.5% (10/117) in cases and 6.8% (16/234) in controls (p = 0.56). The risk of a Hb drop ≥2 g/dl was not associated with either G6PD deficiency (adjusted odds ratio (AOR): 0.81; p = 0.76) or CDA treatment (AOR: 1.28; p = 0.37) alone. However, patients having both risk factors tended to have higher odds (AOR: 11.13; p = 0.25) of experiencing a Hb drop ≥2 g/dl within the first four days after treatment, however this finding was not statistically significant, mainly because G6PD deficient patients treated with CDA were very few. In non-G6PD deficient individuals, the proportion of cases was similar between treatment groups while in G6PD-deficient individuals, haemolytic anaemia occurred more frequently in children treated with CDA (56%) than in those treated with other ACT (29%), though the difference was not significant (p = 0.49).
CONCLUSION
The use of CDA for treating uncomplicated malaria may increase the risk of haemolytic anaemia in G6PD-deficient children.
Malaria is a leading cause of mortality, particularly in sub-Saharan African children. Prompt and efficacious treatment is important as patients may progress within a few hours to severe and possibly fatal disease. Chlorproguanil-dapsone-artesunate (CDA) was a promising artemisinin-based combination therapy (ACT), but its development was prematurely stopped because of safety concerns secondary to its associated risk of haemolytic anaemia in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. The objective of the study was to assess whether CDA treatment and G6PD deficiency are risk factors for a post-treatment haemoglobin drop in African children <5 years of age with uncomplicated malaria.
METHODS
This case–control study was performed in the context of a larger multicentre randomized clinical trial comparing safety and efficacy of four different ACT in children with uncomplicated malaria. Children, who after treatment experienced a haemoglobin drop ≥2 g/dl (cases) within the first four days (days 0, 1, 2, and 3), were compared with those without an Hb drop (controls). Cases and controls were matched for study site, sex, age and baseline haemoglobin measurements. Data were analysed using a conditional logistic regression model.
RESULTS
G6PD deficiency prevalence, homo- or hemizygous, was 8.5% (10/117) in cases and 6.8% (16/234) in controls (p = 0.56). The risk of a Hb drop ≥2 g/dl was not associated with either G6PD deficiency (adjusted odds ratio (AOR): 0.81; p = 0.76) or CDA treatment (AOR: 1.28; p = 0.37) alone. However, patients having both risk factors tended to have higher odds (AOR: 11.13; p = 0.25) of experiencing a Hb drop ≥2 g/dl within the first four days after treatment, however this finding was not statistically significant, mainly because G6PD deficient patients treated with CDA were very few. In non-G6PD deficient individuals, the proportion of cases was similar between treatment groups while in G6PD-deficient individuals, haemolytic anaemia occurred more frequently in children treated with CDA (56%) than in those treated with other ACT (29%), though the difference was not significant (p = 0.49).
CONCLUSION
The use of CDA for treating uncomplicated malaria may increase the risk of haemolytic anaemia in G6PD-deficient children.
Journal Article > ResearchFull Text
Malar J. 2012 May 3; Volume 11 (Issue 1); 150.; DOI:10.1186/1475-2875-11-150
Muehlenbachs A, Nabasumba C, McGready R, Turyakira E, Tumwebaze B, et al.
Malar J. 2012 May 3; Volume 11 (Issue 1); 150.; DOI:10.1186/1475-2875-11-150
BACKGROUND
Data on efficacy of artemisinin-based combination therapy (ACT) to treat Plasmodium falciparum during pregnancy in sub-Saharan Africa is scarce. A recent open label, randomized controlled trial in Mbarara, Uganda demonstrated that artemether-lumefantrine (AL) is not inferior to quinine to treat uncomplicated malaria in pregnancy. Haemozoin can persist in the placenta following clearance of parasites, however there is no data whether ACT can influence the amount of haemozoin or the dynamics of haemozoin clearance.
METHODS
Women attending antenatal clinics with weekly screening and positive blood smears by microscopy were eligible to participate in the trial and were followed to delivery. Placental haemozoin deposition and inflammation were assessed by histology. To determine whether AL was associated with increased haemozoin clearance, population haemozoin clearance curves were calculated based on the longitudinal data.
RESULTS
Of 152 women enrolled in each arm, there were 97 and 98 placental biopsies obtained in the AL and quinine arms, respectively. AL was associated with decreased rates of moderate to high grade haemozoin deposition (13.3% versus 25.8%), which remained significant after correcting for gravidity, time of infection, re-infection, and parasitaemia. The amount of haemozoin proportionately decreased with the duration of time between treatment and delivery and this decline was greater in the AL arm. Haemozoin was not detected in one third of biopsies and the prevalence of inflammation was low, reflecting the efficacy of antenatal care with early detection and prompt treatment of malaria.
CONCLUSIONS
Placental haemozoin deposition was decreased in the AL arm demonstrating a relationship between pharmacological properties of drug to treat antenatal malaria and placental pathology at delivery. Histology may be considered an informative outcome for clinical trials to evaluate malaria control in pregnancy.
Trial registration: REGISTRY: http://clinicaltrials.gov/ct2/show/NCT00495508
Data on efficacy of artemisinin-based combination therapy (ACT) to treat Plasmodium falciparum during pregnancy in sub-Saharan Africa is scarce. A recent open label, randomized controlled trial in Mbarara, Uganda demonstrated that artemether-lumefantrine (AL) is not inferior to quinine to treat uncomplicated malaria in pregnancy. Haemozoin can persist in the placenta following clearance of parasites, however there is no data whether ACT can influence the amount of haemozoin or the dynamics of haemozoin clearance.
METHODS
Women attending antenatal clinics with weekly screening and positive blood smears by microscopy were eligible to participate in the trial and were followed to delivery. Placental haemozoin deposition and inflammation were assessed by histology. To determine whether AL was associated with increased haemozoin clearance, population haemozoin clearance curves were calculated based on the longitudinal data.
RESULTS
Of 152 women enrolled in each arm, there were 97 and 98 placental biopsies obtained in the AL and quinine arms, respectively. AL was associated with decreased rates of moderate to high grade haemozoin deposition (13.3% versus 25.8%), which remained significant after correcting for gravidity, time of infection, re-infection, and parasitaemia. The amount of haemozoin proportionately decreased with the duration of time between treatment and delivery and this decline was greater in the AL arm. Haemozoin was not detected in one third of biopsies and the prevalence of inflammation was low, reflecting the efficacy of antenatal care with early detection and prompt treatment of malaria.
CONCLUSIONS
Placental haemozoin deposition was decreased in the AL arm demonstrating a relationship between pharmacological properties of drug to treat antenatal malaria and placental pathology at delivery. Histology may be considered an informative outcome for clinical trials to evaluate malaria control in pregnancy.
Trial registration: REGISTRY: http://clinicaltrials.gov/ct2/show/NCT00495508
Journal Article > ResearchFull Text
Malar J. 2011 May 18; Volume 10 (Issue 1); 132.; DOI:10.1186/1475-2875-10-132
De Beaudrap P, Nabasumba C, Grandesso F, Turyakira E, Schramm B, et al.
Malar J. 2011 May 18; Volume 10 (Issue 1); 132.; DOI:10.1186/1475-2875-10-132
BACKGROUND
Malaria is a major public health problem, especially for children. However, recent reports suggest a decline in the malaria burden. The aim of this study was to assess the change in the prevalence of malaria infection among children below five years of age between 2004 and 2010 in a mesoendemic area of Uganda and to analyse the risk factors of malaria infection.
METHODS
Two cross-sectional surveys were conducted in 2004 and in 2010 at the end of the rainy and dry seasons to measure the prevalence of P. falciparum infection among children less than five years of age. Rapid diagnostic tests and blood smears were used to diagnose malaria infection. In 2010, sampling was stratified by urban and rural areas. In each selected household, knowledge of malaria and bed nets, and bed net ownership and use, were assessed.
RESULTS
In 2004 and 2010, respectively, a total of 527 and 2,320 (999 in the urban area and 1,321 in rural areas) children less than five years old were enrolled. Prevalence of malaria infection declined from 43% (95% CI: 34-52) in 2004, to 23% (95% CI: 17-30) in rural areas in 2010 and 3% (95% CI: 2-5) in the urban area in 2010. From the rainy to dry season in 2010, prevalence decreased from 23% to 10% (95% CI: 6-14) in rural areas (P = 0.001) and remained stable from 3% to 4% (95% CI: 1-7) in the urban area (P = 0.9). The proportion of households reporting ownership and use of at least one bed net increased from 22.9% in 2004 to 64.7% in the urban area and 44.5% in rural areas in 2010 (P < 0.001). In 2010, the risk of malaria infection was consistently associated with child age and household wealth. In rural areas, malaria infection was also associated with geographic factors.
CONCLUSIONS
This study reports a significant drop in the prevalence of malaria infection among children below five years of age, paralleled by an uptake in bed-net use. However, prevalence remains unacceptably high in rural areas and is strongly associated with poverty.
Malaria is a major public health problem, especially for children. However, recent reports suggest a decline in the malaria burden. The aim of this study was to assess the change in the prevalence of malaria infection among children below five years of age between 2004 and 2010 in a mesoendemic area of Uganda and to analyse the risk factors of malaria infection.
METHODS
Two cross-sectional surveys were conducted in 2004 and in 2010 at the end of the rainy and dry seasons to measure the prevalence of P. falciparum infection among children less than five years of age. Rapid diagnostic tests and blood smears were used to diagnose malaria infection. In 2010, sampling was stratified by urban and rural areas. In each selected household, knowledge of malaria and bed nets, and bed net ownership and use, were assessed.
RESULTS
In 2004 and 2010, respectively, a total of 527 and 2,320 (999 in the urban area and 1,321 in rural areas) children less than five years old were enrolled. Prevalence of malaria infection declined from 43% (95% CI: 34-52) in 2004, to 23% (95% CI: 17-30) in rural areas in 2010 and 3% (95% CI: 2-5) in the urban area in 2010. From the rainy to dry season in 2010, prevalence decreased from 23% to 10% (95% CI: 6-14) in rural areas (P = 0.001) and remained stable from 3% to 4% (95% CI: 1-7) in the urban area (P = 0.9). The proportion of households reporting ownership and use of at least one bed net increased from 22.9% in 2004 to 64.7% in the urban area and 44.5% in rural areas in 2010 (P < 0.001). In 2010, the risk of malaria infection was consistently associated with child age and household wealth. In rural areas, malaria infection was also associated with geographic factors.
CONCLUSIONS
This study reports a significant drop in the prevalence of malaria infection among children below five years of age, paralleled by an uptake in bed-net use. However, prevalence remains unacceptably high in rural areas and is strongly associated with poverty.
Journal Article > ResearchFull Text
Malar J. 2013 April 24; Volume 12 (Issue 1); 139.; DOI:10.1186/1475-2875-12-139
De Beaudrap P, Turyakira E, White LJ, Nabasumba C, Tumwebaze B, et al.
Malar J. 2013 April 24; Volume 12 (Issue 1); 139.; DOI:10.1186/1475-2875-12-139
BACKGROUND
Malaria in pregnancy (MiP) is a major public health problem in endemic areas of sub-Saharan Africa and has important consequences on birth outcome. Because MiP is a complex phenomenon and malaria epidemiology is rapidly changing, additional evidence is still required to understand how best to control malaria. This study followed a prospective cohort of pregnant women who had access to intensive malaria screening and prompt treatment to identify factors associated with increased risk of MiP and to analyse how various characteristics of MiP affect delivery outcomes.
METHODS
Between October 2006 and May 2009, 1,218 pregnant women were enrolled in a prospective cohort. After an initial assessment, they were screened weekly for malaria. At delivery, blood smears were obtained from the mother, placenta, cord and newborn. Multivariate analyses were performed to analyse the association between mothers' characteristics and malaria risk, as well as between MiP and birth outcome, length and weight at birth. This study is a secondary analysis of a trial registered with ClinicalTrials.gov, number NCT00495508.
RESULTS
Overall, 288/1,069 (27%) mothers had 345 peripheral malaria infections. The risk of peripheral malaria was higher in mothers who were younger, infected with HIV, had less education, lived in rural areas or reported no bed net use, whereas the risk of placental infection was associated with more frequent malaria infections and with infection during late pregnancy. The risk of pre-term delivery and of miscarriage was increased in mothers infected with HIV, living in rural areas and with MiP occurring within two weeks of delivery.In adjusted analysis, birth weight but not length was reduced in babies of mothers exposed to MiP (-60 g, 95%CI: -120 to 0 for at least one infection and -150 g, 95%CI: -280 to -20 for >1 infections).
CONCLUSIONS
In this study, the timing, parasitaemia level and number of peripherally-detected malaria infections, but not the presence of fever, were associated with adverse birth outcomes. Hence, prompt malaria detection and treatment should be offered to pregnant women regardless of symptoms or other preventive measures used during pregnancy, and with increased focus on mothers living in remote areas.
Malaria in pregnancy (MiP) is a major public health problem in endemic areas of sub-Saharan Africa and has important consequences on birth outcome. Because MiP is a complex phenomenon and malaria epidemiology is rapidly changing, additional evidence is still required to understand how best to control malaria. This study followed a prospective cohort of pregnant women who had access to intensive malaria screening and prompt treatment to identify factors associated with increased risk of MiP and to analyse how various characteristics of MiP affect delivery outcomes.
METHODS
Between October 2006 and May 2009, 1,218 pregnant women were enrolled in a prospective cohort. After an initial assessment, they were screened weekly for malaria. At delivery, blood smears were obtained from the mother, placenta, cord and newborn. Multivariate analyses were performed to analyse the association between mothers' characteristics and malaria risk, as well as between MiP and birth outcome, length and weight at birth. This study is a secondary analysis of a trial registered with ClinicalTrials.gov, number NCT00495508.
RESULTS
Overall, 288/1,069 (27%) mothers had 345 peripheral malaria infections. The risk of peripheral malaria was higher in mothers who were younger, infected with HIV, had less education, lived in rural areas or reported no bed net use, whereas the risk of placental infection was associated with more frequent malaria infections and with infection during late pregnancy. The risk of pre-term delivery and of miscarriage was increased in mothers infected with HIV, living in rural areas and with MiP occurring within two weeks of delivery.In adjusted analysis, birth weight but not length was reduced in babies of mothers exposed to MiP (-60 g, 95%CI: -120 to 0 for at least one infection and -150 g, 95%CI: -280 to -20 for >1 infections).
CONCLUSIONS
In this study, the timing, parasitaemia level and number of peripherally-detected malaria infections, but not the presence of fever, were associated with adverse birth outcomes. Hence, prompt malaria detection and treatment should be offered to pregnant women regardless of symptoms or other preventive measures used during pregnancy, and with increased focus on mothers living in remote areas.
Journal Article > ResearchAbstract
Lancet Infect Dis. 2010 November 1; Volume 10 (Issue 11); DOI:10.1016/S1473-3099(10)70202-4
Piola P, Nabasumba C, Turyakira E, Dhorda M, Lindegardh N, et al.
Lancet Infect Dis. 2010 November 1; Volume 10 (Issue 11); DOI:10.1016/S1473-3099(10)70202-4
BACKGROUND: Malaria in pregnancy is associated with maternal and fetal morbidity and mortality. In 2006, WHO recommended use of artemisinin-based combination treatments during the second or third trimesters, but data on efficacy and safety in Africa were scarce. We aimed to assess whether artemether-lumefantrine was at least as efficacious as oral quinine for the treatment of uncomplicated falciparum malaria during the second and third trimesters of pregnancy in Mbarara, Uganda. METHODS: We did an open-label, randomised, non-inferiority trial between October, 2006, and May, 2009, at the antenatal clinics of the Mbarara University of Science and Technology Hospital in Uganda. Pregnant women were randomly assigned (1:1) by computer generated sequence to receive either quinine hydrochloride or artemether-lumefantrine, and were followed up weekly until delivery. Our primary endpoint was cure rate at day 42, confirmed by PCR. The non-inferiority margin was a difference in cure rate of 5%. Analysis of efficacy was for all randomised patients without study deviations that could have affected the efficacy outcome. This study was registered with ClinicalTrials.gov, number NCT00495508. FINDINGS: 304 women were randomly assigned, 152 to each treatment group. By day 42, 16 patients were lost to follow-up and 25 were excluded from the analysis. At day 42, 137 (99·3%) of 138 patients taking artemether-lumefantrine and 122 (97·6%) of 125 taking quinine were cured-difference 1·7% (lower limit of 95% CI -0·9). There were 290 adverse events in the quinine group and 141 in the artemether-lumefantrine group. INTERPRETATION: Artemisinin derivatives are not inferior to oral quinine for the treatment of uncomplicated malaria in pregnancy and might be preferable on the basis of safety and efficacy. FUNDING: Médecins Sans Frontières and the European Commission.
Journal Article > ResearchFull Text
Malar J. 2008 August 9; Volume 7 (Issue 1); 154.; DOI:10.1186/1475-2875-7-154
Ashley EA, Pinoges LLP, Turyakira E, Dorsey G, Checchi F, et al.
Malar J. 2008 August 9; Volume 7 (Issue 1); 154.; DOI:10.1186/1475-2875-7-154
BACKGROUND: Use of different methods for assessing the efficacy of artemisinin-based combination antimalarial treatments (ACTs) will result in different estimates being reported, with implications for changes in treatment policy.
METHODS: Data from different in vivo studies of ACT treatment of uncomplicated falciparum malaria were combined in a single database. Efficacy at day 28 corrected by PCR genotyping was estimated using four methods. In the first two methods, failure rates were calculated as proportions with either (1a) reinfections excluded from the analysis (standard WHO per-protocol analysis) or (1b) reinfections considered as treatment successes. In the second two methods, failure rates were estimated using the Kaplan-Meier product limit formula using either (2a) WHO (2001) definitions of failure, or (2b) failure defined using parasitological criteria only.
RESULTS: Data analysed represented 2926 patients from 17 studies in nine African countries. Three ACTs were studied: artesunate-amodiaquine (AS+AQ, N = 1702), artesunate-sulphadoxine-pyrimethamine (AS+SP, N = 706) and artemether-lumefantrine (AL, N = 518).Using method (1a), the day 28 failure rates ranged from 0% to 39.3% for AS+AQ treatment, from 1.0% to 33.3% for AS+SP treatment and from 0% to 3.3% for AL treatment. The median [range] difference in point estimates between method 1a (reference) and the others were: (i) method 1b = 1.3% [0 to 24.8], (ii) method 2a = 1.1% [0 to 21.5], and (iii) method 2b = 0% [-38 to 19.3].The standard per-protocol method (1a) tended to overestimate the risk of failure when compared to alternative methods using the same endpoint definitions (methods 1b and 2a). It either overestimated or underestimated the risk when endpoints based on parasitological rather than clinical criteria were applied. The standard method was also associated with a 34% reduction in the number of patients evaluated compared to the number of patients enrolled. Only 2% of the sample size was lost when failures were classified on the first day of parasite recurrence and survival analytical methods were used.
CONCLUSION: The primary purpose of an in vivo study should be to provide a precise estimate of the risk of antimalarial treatment failure due to drug resistance. Use of survival analysis is the most appropriate way to estimate failure rates with parasitological recurrence classified as treatment failure on the day it occurs.
METHODS: Data from different in vivo studies of ACT treatment of uncomplicated falciparum malaria were combined in a single database. Efficacy at day 28 corrected by PCR genotyping was estimated using four methods. In the first two methods, failure rates were calculated as proportions with either (1a) reinfections excluded from the analysis (standard WHO per-protocol analysis) or (1b) reinfections considered as treatment successes. In the second two methods, failure rates were estimated using the Kaplan-Meier product limit formula using either (2a) WHO (2001) definitions of failure, or (2b) failure defined using parasitological criteria only.
RESULTS: Data analysed represented 2926 patients from 17 studies in nine African countries. Three ACTs were studied: artesunate-amodiaquine (AS+AQ, N = 1702), artesunate-sulphadoxine-pyrimethamine (AS+SP, N = 706) and artemether-lumefantrine (AL, N = 518).Using method (1a), the day 28 failure rates ranged from 0% to 39.3% for AS+AQ treatment, from 1.0% to 33.3% for AS+SP treatment and from 0% to 3.3% for AL treatment. The median [range] difference in point estimates between method 1a (reference) and the others were: (i) method 1b = 1.3% [0 to 24.8], (ii) method 2a = 1.1% [0 to 21.5], and (iii) method 2b = 0% [-38 to 19.3].The standard per-protocol method (1a) tended to overestimate the risk of failure when compared to alternative methods using the same endpoint definitions (methods 1b and 2a). It either overestimated or underestimated the risk when endpoints based on parasitological rather than clinical criteria were applied. The standard method was also associated with a 34% reduction in the number of patients evaluated compared to the number of patients enrolled. Only 2% of the sample size was lost when failures were classified on the first day of parasite recurrence and survival analytical methods were used.
CONCLUSION: The primary purpose of an in vivo study should be to provide a precise estimate of the risk of antimalarial treatment failure due to drug resistance. Use of survival analysis is the most appropriate way to estimate failure rates with parasitological recurrence classified as treatment failure on the day it occurs.
Journal Article > ResearchFull Text
Malar J. 2016 February 16; Volume 15 (Issue 1); 92.; DOI:10.1186/s12936-016-1135-7
De Beaudrap P, Turyakira E, Nabasumba C, Tumwebaze B, Piola P, et al.
Malar J. 2016 February 16; Volume 15 (Issue 1); 92.; DOI:10.1186/s12936-016-1135-7
BACKGROUND
Malaria in pregnancy (MiP) is a major cause of fetal growth restriction and low birth weight in endemic areas of sub-Saharan Africa. Understanding of the impact of MiP on infant growth and infant risk of malaria or morbidity is poorly characterized. The objective of this study was to describe the impact of MIP on subsequent infant growth, malaria and morbidity.
METHODS
Between 2006 and 2009, 82 % (832/1018) of pregnant women with live-born singletons and ultrasound determined gestational age were enrolled in a prospective cohort with active weekly screening and treatment for malaria. Infants were followed monthly for growth and morbidity and received active monthly screening and treatment for malaria during their first year of life. Multivariate analyses were performed to analyse the association between malaria exposure during pregnancy and infants' growth, malaria infections, diarrhoea episodes and acute respiratory infections.
RESULTS
Median time of infant follow-up was 12 months and infants born to a mother who had MiP were at increased risk of impaired height and weight gain (-2.71 cm, 95 % CI -4.17 to -1.25 and -0.42 kg, 95 % CI -0.76 to -0.08 at 12 months for >1 MiP compared to no MiP) and of malaria infection (relative risk 10.42, 95 % CI 2.64-41.10 for infants born to mothers with placental malaria). The risks of infant growth restriction and infant malaria infection were maximal when maternal malaria occurred in the 12 weeks prior to delivery. Recurrent MiP was also associated with acute respiratory infection (RR 1.96, 95 % CI 1.25-3.06) and diarrhoea during infancy (RR 1.93, 95 % CI 1.02-3.66).
CONCLUSION
This study shows that despite frequent active screening and prompt treatment of MiP, impaired growth and an increased risk of malaria and non-malaria infections can be observed in the infants. Effective preventive measures in pregnancy remain a research priority. This study was registered with ClinicalTrials.gov, number NCT00495508.
Malaria in pregnancy (MiP) is a major cause of fetal growth restriction and low birth weight in endemic areas of sub-Saharan Africa. Understanding of the impact of MiP on infant growth and infant risk of malaria or morbidity is poorly characterized. The objective of this study was to describe the impact of MIP on subsequent infant growth, malaria and morbidity.
METHODS
Between 2006 and 2009, 82 % (832/1018) of pregnant women with live-born singletons and ultrasound determined gestational age were enrolled in a prospective cohort with active weekly screening and treatment for malaria. Infants were followed monthly for growth and morbidity and received active monthly screening and treatment for malaria during their first year of life. Multivariate analyses were performed to analyse the association between malaria exposure during pregnancy and infants' growth, malaria infections, diarrhoea episodes and acute respiratory infections.
RESULTS
Median time of infant follow-up was 12 months and infants born to a mother who had MiP were at increased risk of impaired height and weight gain (-2.71 cm, 95 % CI -4.17 to -1.25 and -0.42 kg, 95 % CI -0.76 to -0.08 at 12 months for >1 MiP compared to no MiP) and of malaria infection (relative risk 10.42, 95 % CI 2.64-41.10 for infants born to mothers with placental malaria). The risks of infant growth restriction and infant malaria infection were maximal when maternal malaria occurred in the 12 weeks prior to delivery. Recurrent MiP was also associated with acute respiratory infection (RR 1.96, 95 % CI 1.25-3.06) and diarrhoea during infancy (RR 1.93, 95 % CI 1.02-3.66).
CONCLUSION
This study shows that despite frequent active screening and prompt treatment of MiP, impaired growth and an increased risk of malaria and non-malaria infections can be observed in the infants. Effective preventive measures in pregnancy remain a research priority. This study was registered with ClinicalTrials.gov, number NCT00495508.