Journal Article > ResearchFull Text
N Engl J Med. 2016 June 23; Volume 374 (Issue 25); DOI:10.1056/NEJMoa1513137
Ménard D, Khim N, Beghain J, Adegnika AA, Alam MS, et al.
N Engl J Med. 2016 June 23; Volume 374 (Issue 25); DOI:10.1056/NEJMoa1513137
Recent gains in reducing the global burden of malaria are threatened by the emergence of Plasmodium falciparum resistance to artemisinins. The discovery that mutations in portions of a P. falciparum gene encoding kelch (K13)-propeller domains are the major determinant of resistance has provided opportunities for monitoring such resistance on a global scale.
Journal Article > ResearchFull Text
PLoS Negl Trop Dis. 2022 January 6; Volume 16 (Issue 1); E0010089.; DOI:10.1371/journal.pntd.0010089
Olayinka A, Bourner J, Akpede GO, Okoeguale J, Abejegah C, et al.
PLoS Negl Trop Dis. 2022 January 6; Volume 16 (Issue 1); E0010089.; DOI:10.1371/journal.pntd.0010089
BACKGROUND
Only one recommendation currently exists for the treatment of Lassa fever (LF), which is ribavirin administered in conjunction with supportive care. This recommendation is primarily based on evidence generated from a single clinical trial that was conducted more than 30 years ago-the methodology and results of which have recently come under scrutiny. The requirement for novel therapeutics and reassessment of ribavirin is therefore urgent. However, a significant amount of work now needs to be undertaken to ensure that future trials for LF can be conducted consistently and reliably to facilitate the efficient generation of evidence.
METHODOLOGY
We convened a consultation group to establish the position of clinicians and researchers on the core components of future trials. A Core Eligibility Criteria (CEC), Core Case Definition (CCD), Core Outcome Set (COS) and Core Data Variables (CDV) were developed through the process of a multi-stakeholder consultation that took place using a modified-Delphi methodology.
RESULTS
A consensus position was achieved for each aspect of the framework, which accounts for the inclusion of pregnant women and children in future LF clinical trials. The framework consists of 8 core criteria, as well as additional considerations for trial protocols.
CONCLUSIONS
This project represents the first step towards delineating the clinical development pathway for new Lassa fever therapeutics, following a period of 40 years without advancement. Future planned projects will bolster the work initiated here to continue the advancement of LF clinical research through a regionally-centred, collaborative methodology, with the aim of delineating a clear pathway through which LF clinical trials can progress efficiently and ensure sustainable investments are made in research capacity at a regional level.
Only one recommendation currently exists for the treatment of Lassa fever (LF), which is ribavirin administered in conjunction with supportive care. This recommendation is primarily based on evidence generated from a single clinical trial that was conducted more than 30 years ago-the methodology and results of which have recently come under scrutiny. The requirement for novel therapeutics and reassessment of ribavirin is therefore urgent. However, a significant amount of work now needs to be undertaken to ensure that future trials for LF can be conducted consistently and reliably to facilitate the efficient generation of evidence.
METHODOLOGY
We convened a consultation group to establish the position of clinicians and researchers on the core components of future trials. A Core Eligibility Criteria (CEC), Core Case Definition (CCD), Core Outcome Set (COS) and Core Data Variables (CDV) were developed through the process of a multi-stakeholder consultation that took place using a modified-Delphi methodology.
RESULTS
A consensus position was achieved for each aspect of the framework, which accounts for the inclusion of pregnant women and children in future LF clinical trials. The framework consists of 8 core criteria, as well as additional considerations for trial protocols.
CONCLUSIONS
This project represents the first step towards delineating the clinical development pathway for new Lassa fever therapeutics, following a period of 40 years without advancement. Future planned projects will bolster the work initiated here to continue the advancement of LF clinical research through a regionally-centred, collaborative methodology, with the aim of delineating a clear pathway through which LF clinical trials can progress efficiently and ensure sustainable investments are made in research capacity at a regional level.
Journal Article > Meta-AnalysisFull Text
Malar J. 2019 July 5; Volume 18 (Issue 1); 225.; DOI:10.1186/s12936-019-2837-4.
WorldWide Antimalarial Resistance Network Methodology Study Group, Dahal P, Simpson JA, Abdulla S, Achan J, et al.
Malar J. 2019 July 5; Volume 18 (Issue 1); 225.; DOI:10.1186/s12936-019-2837-4.
BACKGROUND
Therapeutic efficacy studies in uncomplicated Plasmodium falciparum malaria are confounded by new infections, which constitute competing risk events since they can potentially preclude/pre-empt the detection of subsequent recrudescence of persistent, sub-microscopic primary infections.
METHODS
Antimalarial studies typically report the risk of recrudescence derived using the Kaplan-Meier (K-M) method, which considers new infections acquired during the follow-up period as censored. Cumulative Incidence Function (CIF) provides an alternative approach for handling new infections, which accounts for them as a competing risk event. The complement of the estimate derived using the K-M method (1 minus K-M), and the CIF were used to derive the risk of recrudescence at the end of the follow-up period using data from studies collated in the WorldWide Antimalarial Resistance Network data repository. Absolute differences in the failure estimates derived using these two methods were quantified. In comparative studies, the equality of two K-M curves was assessed using the log-rank test, and the equality of CIFs using Gray's k-sample test (both at 5% level of significance). Two different regression modelling strategies for recrudescence were considered: cause-specific Cox model and Fine and Gray's sub-distributional hazard model.
RESULTS
Data were available from 92 studies (233 treatment arms, 31,379 patients) conducted between 1996 and 2014. At the end of follow-up, the median absolute overestimation in the estimated risk of cumulative recrudescence by using 1 minus K-M approach was 0.04% (interquartile range (IQR): 0.00-0.27%, Range: 0.00-3.60%). The overestimation was correlated positively with the proportion of patients with recrudescence [Pearson's correlation coefficient (ρ): 0.38, 95% Confidence Interval (CI) 0.30-0.46] or new infection [ρ: 0.43; 95% CI 0.35-0.54]. In three study arms, the point estimates of failure were greater than 10% (the WHO threshold for withdrawing antimalarials) when the K-M method was used, but remained below 10% when using the CIF approach, but the 95% confidence interval included this threshold.
CONCLUSIONS
The 1 minus K-M method resulted in a marginal overestimation of recrudescence that became increasingly pronounced as antimalarial efficacy declined, particularly when the observed proportion of new infection was high. The CIF approach provides an alternative approach for derivation of failure estimates in antimalarial trials, particularly in high transmission settings.
Therapeutic efficacy studies in uncomplicated Plasmodium falciparum malaria are confounded by new infections, which constitute competing risk events since they can potentially preclude/pre-empt the detection of subsequent recrudescence of persistent, sub-microscopic primary infections.
METHODS
Antimalarial studies typically report the risk of recrudescence derived using the Kaplan-Meier (K-M) method, which considers new infections acquired during the follow-up period as censored. Cumulative Incidence Function (CIF) provides an alternative approach for handling new infections, which accounts for them as a competing risk event. The complement of the estimate derived using the K-M method (1 minus K-M), and the CIF were used to derive the risk of recrudescence at the end of the follow-up period using data from studies collated in the WorldWide Antimalarial Resistance Network data repository. Absolute differences in the failure estimates derived using these two methods were quantified. In comparative studies, the equality of two K-M curves was assessed using the log-rank test, and the equality of CIFs using Gray's k-sample test (both at 5% level of significance). Two different regression modelling strategies for recrudescence were considered: cause-specific Cox model and Fine and Gray's sub-distributional hazard model.
RESULTS
Data were available from 92 studies (233 treatment arms, 31,379 patients) conducted between 1996 and 2014. At the end of follow-up, the median absolute overestimation in the estimated risk of cumulative recrudescence by using 1 minus K-M approach was 0.04% (interquartile range (IQR): 0.00-0.27%, Range: 0.00-3.60%). The overestimation was correlated positively with the proportion of patients with recrudescence [Pearson's correlation coefficient (ρ): 0.38, 95% Confidence Interval (CI) 0.30-0.46] or new infection [ρ: 0.43; 95% CI 0.35-0.54]. In three study arms, the point estimates of failure were greater than 10% (the WHO threshold for withdrawing antimalarials) when the K-M method was used, but remained below 10% when using the CIF approach, but the 95% confidence interval included this threshold.
CONCLUSIONS
The 1 minus K-M method resulted in a marginal overestimation of recrudescence that became increasingly pronounced as antimalarial efficacy declined, particularly when the observed proportion of new infection was high. The CIF approach provides an alternative approach for derivation of failure estimates in antimalarial trials, particularly in high transmission settings.