Journal Article > ResearchAbstract Only
Science. 2017 November 10; Volume 358 (Issue 6364); 785-789.; DOI:10.1126/science.aad5901
Weill FX, Domman D, Njamkepo E, Tarr C, Rauzier J, et al.
Science. 2017 November 10; Volume 358 (Issue 6364); 785-789.; DOI:10.1126/science.aad5901
The seventh cholera pandemic has heavily affected Africa, although the origin and continental spread of the disease remain undefined. We used genomic data from 1070 Vibrio cholerae O1 isolates, across 45 African countries and over a 49-year period, to show that past epidemics were attributable to a single expanded lineage. This lineage was introduced at least 11 times since 1970, into two main regions, West Africa and East/Southern Africa, causing epidemics that lasted up to 28 years. The last five introductions into Africa, all from Asia, involved multidrug-resistant sublineages that replaced antibiotic-susceptible sublineages after 2000. This phylogenetic framework describes the periodicity of lineage introduction and the stable routes of cholera spread, which should inform the rational design of control measures for cholera in Africa.
Journal Article > ResearchFull Text
Emerg Infect Dis. 2023 January 1; Volume 29 (Issue 1); 149-153.; DOI:10.3201/eid2901.220641
Hounmanou YM, Njamkepo E, Rauzier J, Gallandat K, Jeandron A, et al.
Emerg Infect Dis. 2023 January 1; Volume 29 (Issue 1); 149-153.; DOI:10.3201/eid2901.220641
Africa’s Lake Tanganyika basin is a cholera hotspot. During 2001–2020, Vibrio cholerae O1 isolates obtained from the Democratic Republic of the Congo side of the lake belonged to 2 of the 5 clades of the AFR10 sublineage. One clade became predominant after acquiring a parC mutation that decreased susceptibility to ciprofloxacin.