Journal Article > ResearchFull Text
Lancet. 2011 April 19; Volume 377 (Issue 9776); DOI:10.1016/S0140-6736(11)60438-8
Boehme CC, Nicol MP, Nabeta P, Michael JS, Gotuzzo E, et al.
Lancet. 2011 April 19; Volume 377 (Issue 9776); DOI:10.1016/S0140-6736(11)60438-8
BACKGROUND: The Xpert MTB/RIF test (Cepheid, Sunnyvale, CA, USA) can detect tuberculosis and its multidrug-resistant form with very high sensitivity and specificity in controlled studies, but no performance data exist from district and subdistrict health facilities in tuberculosis-endemic countries. We aimed to assess operational feasibility, accuracy, and effectiveness of implementation in such settings. METHODS: We assessed adults (≥18 years) with suspected tuberculosis or multidrug-resistant tuberculosis consecutively presenting with cough lasting at least 2 weeks to urban health centres in South Africa, Peru, and India, drug-resistance screening facilities in Azerbaijan and the Philippines, and an emergency room in Uganda. Patients were excluded from the main analyses if their second sputum sample was collected more than 1 week after the first sample, or if no valid reference standard or MTB/RIF test was available. We compared one-off direct MTB/RIF testing in nine microscopy laboratories adjacent to study sites with 2-3 sputum smears and 1-3 cultures, dependent on site, and drug-susceptibility testing. We assessed indicators of robustness including indeterminate rate and between-site performance, and compared time to detection, reporting, and treatment, and patient dropouts for the techniques used. FINDINGS: We enrolled 6648 participants between Aug 11, 2009, and June 26, 2010. One-off MTB/RIF testing detected 933 (90·3%) of 1033 culture-confirmed cases of tuberculosis, compared with 699 (67·1%) of 1041 for microscopy. MTB/RIF test sensitivity was 76·9% in smear-negative, culture-positive patients (296 of 385 samples), and 99·0% specific (2846 of 2876 non-tuberculosis samples). MTB/RIF test sensitivity for rifampicin resistance was 94·4% (236 of 250) and specificity was 98·3% (796 of 810). Unlike microscopy, MTB/RIF test sensitivity was not significantly lower in patients with HIV co-infection. Median time to detection of tuberculosis for the MTB/RIF test was 0 days (IQR 0-1), compared with 1 day (0-1) for microscopy, 30 days (23-43) for solid culture, and 16 days (13-21) for liquid culture. Median time to detection of resistance was 20 days (10-26) for line-probe assay and 106 days (30-124) for conventional drug-susceptibility testing. Use of the MTB/RIF test reduced median time to treatment for smear-negative tuberculosis from 56 days (39-81) to 5 days (2-8). The indeterminate rate of MTB/RIF testing was 2·4% (126 of 5321 samples) compared with 4·6% (441 of 9690) for cultures. INTERPRETATION: The MTB/RIF test can effectively be used in low-resource settings to simplify patients' access to early and accurate diagnosis, thereby potentially decreasing morbidity associated with diagnostic delay, dropout and mistreatment. FUNDING: Foundation for Innovative New Diagnostics, Bill & Melinda Gates Foundation, European and Developing Countries Clinical Trials Partnership (TA2007.40200.009), Wellcome Trust (085251/B/08/Z), and UK Department for International Development.
Journal Article > CommentaryFull Text
Lancet. 2017 November 11; Volume 390 (Issue 10108); 2211-2214.; DOI:10.1016/S0140-6736(17)31224-2
Perkins MD, Dye C, Balasegaram M, Brechot C, Mombouli JV, et al.
Lancet. 2017 November 11; Volume 390 (Issue 10108); 2211-2214.; DOI:10.1016/S0140-6736(17)31224-2
Diagnostics are crucial in mitigating the effect of disease outbreaks. Because diagnostic development and validation are time consuming, they should be carried out in anticipation of epidemics rather than in response to them. The diagnostic response to the 2014-15 Ebola epidemic, although ultimately effective, was slow and expensive. If a focused mechanism had existed with the technical and financial resources to drive its development ahead of the outbreak, point-of-care Ebola tests supporting a less costly and more mobile response could have been available early on in the diagnosis process. A new partnering model could drive rapid development of tests and surveillance strategies for novel pathogens that emerge in future outbreaks. We look at lessons learned from the Ebola outbreak and propose specific solutions to improve the speed of new assay development and ensure their effective deployment.
Journal Article > CommentaryFull Text
PLoS Negl Trop Dis. 2015 June 11; Volume 9 (Issue 6); DOI:10.1371/journal.pntd.0003734
chua AC, Cunningham J, Moussy FG, Perkins MD, Formenty P
PLoS Negl Trop Dis. 2015 June 11; Volume 9 (Issue 6); DOI:10.1371/journal.pntd.0003734