Journal Article > ResearchFull Text
PLoS Negl Trop Dis. 2010 October 26; Volume 4 (Issue 10); DOI:10.1371/journal.pntd.0000709
Hailu ADE, Musa AM, Wasunna M, Balasegaram M, Yifru S, et al.
PLoS Negl Trop Dis. 2010 October 26; Volume 4 (Issue 10); DOI:10.1371/journal.pntd.0000709
Visceral leishmaniasis (VL) is a major health problem in developing countries. The untreated disease is fatal, available treatment is expensive and often toxic, and drug resistance is increasing. Improved treatment options are needed. Paromomycin was shown to be an efficacious first-line treatment with low toxicity in India.
Journal Article > ResearchFull Text
Clin Drug Investig. 2017 March 1; Volume 37 (Issue 3); 259-272.; DOI:10.1007/s40261-016-0481-0
Kimutai R, Musa AM, Njoroge SM, Omollo R, Alves F, et al.
Clin Drug Investig. 2017 March 1; Volume 37 (Issue 3); 259-272.; DOI:10.1007/s40261-016-0481-0
INTRODUCTION
In 2010, WHO recommended a new first-line treatment for visceral leishmaniasis (VL) in Eastern Africa. The new treatment, a combination of intravenous (IV) or intramuscular (IM) sodium stibogluconate (SSG) and IM paromomycin (PM) was an improvement over SSG monotherapy, the previous first-line VL treatment in the region. To monitor the new treatment's safety and effectiveness in routine clinical practice a pharmacovigilance (PV) programme was developed.
METHODS
A prospective PV cohort was developed. Regulatory approval was obtained in Sudan, Kenya, Uganda and Ethiopia. Twelve sentinel sites sponsored by the Ministries of Health, Médecins Sans Frontières (MSF) and Drugs for Neglected Diseases initiative (DNDi) participated. VL patients treated using the new treatment were consented and included in a common registry that collected demographics, baseline clinical characteristics, adverse events, serious adverse events and treatment outcomes. Six-monthly periodic safety update reports (PSUR) were prepared and reviewed by a PV steering committee.
RESULTS
Overall 3126 patients were enrolled: 1962 (62.7%) from Sudan, 652 (20.9%) from Kenya, 322 (10.3%) from Ethiopia and 190 (6.1%) from Uganda. Patients were mostly male children (68.1%, median age 11 years) with primary VL (97.8%). SSG-PM initial cure rate was 95.1%; no geographical differences were noted. HIV/VL co-infected patients and patients older than 50 years had initial cure rates of 56 and 81.4%, respectively, while 1063 (34%) patients had at least one adverse event (AE) during treatment and 1.92% (n = 60) had a serious adverse event (SAE) with a mortality of 1.0% (n = 32). There were no serious unexpected adverse drug reactions.
CONCLUSIONS
This first regional PV programme in VL supports SSG-PM combination as first-line treatment for primary VL in Eastern Africa. SSG-PM was effective and safe except in HIV/VL co-infected or older patients. Active PV surveillance of targeted safety, effectiveness and key VL outcomes such us VL relapse, PKDL and HIV/VL co-infection should continue and PV data integrated to national and WHO PV databases.
In 2010, WHO recommended a new first-line treatment for visceral leishmaniasis (VL) in Eastern Africa. The new treatment, a combination of intravenous (IV) or intramuscular (IM) sodium stibogluconate (SSG) and IM paromomycin (PM) was an improvement over SSG monotherapy, the previous first-line VL treatment in the region. To monitor the new treatment's safety and effectiveness in routine clinical practice a pharmacovigilance (PV) programme was developed.
METHODS
A prospective PV cohort was developed. Regulatory approval was obtained in Sudan, Kenya, Uganda and Ethiopia. Twelve sentinel sites sponsored by the Ministries of Health, Médecins Sans Frontières (MSF) and Drugs for Neglected Diseases initiative (DNDi) participated. VL patients treated using the new treatment were consented and included in a common registry that collected demographics, baseline clinical characteristics, adverse events, serious adverse events and treatment outcomes. Six-monthly periodic safety update reports (PSUR) were prepared and reviewed by a PV steering committee.
RESULTS
Overall 3126 patients were enrolled: 1962 (62.7%) from Sudan, 652 (20.9%) from Kenya, 322 (10.3%) from Ethiopia and 190 (6.1%) from Uganda. Patients were mostly male children (68.1%, median age 11 years) with primary VL (97.8%). SSG-PM initial cure rate was 95.1%; no geographical differences were noted. HIV/VL co-infected patients and patients older than 50 years had initial cure rates of 56 and 81.4%, respectively, while 1063 (34%) patients had at least one adverse event (AE) during treatment and 1.92% (n = 60) had a serious adverse event (SAE) with a mortality of 1.0% (n = 32). There were no serious unexpected adverse drug reactions.
CONCLUSIONS
This first regional PV programme in VL supports SSG-PM combination as first-line treatment for primary VL in Eastern Africa. SSG-PM was effective and safe except in HIV/VL co-infected or older patients. Active PV surveillance of targeted safety, effectiveness and key VL outcomes such us VL relapse, PKDL and HIV/VL co-infection should continue and PV data integrated to national and WHO PV databases.
Journal Article > LetterFull Text
Nature. 2019 January 2; Volume 565 (Issue 7738); DOI:10.1038/s41586-018-0818-3
Weill FX, Domman D, Njamkepo E, Almesbahi AA, Naji MAM, et al.
Nature. 2019 January 2; Volume 565 (Issue 7738); DOI:10.1038/s41586-018-0818-3
Yemen is currently experiencing, to our knowledge, the largest cholera epidemic in recent history. The first cases were declared in September 2016, and over 1.1 million cases and 2,300 deaths have since been reported1. Here we investigate the phylogenetic relationships, pathogenesis and determinants of antimicrobial resistance by sequencing the genomes of Vibrio cholerae isolates from the epidemic in Yemen and recent isolates from neighbouring regions. These 116 genomic sequences were placed within the phylogenetic context of a global collection of 1,087 isolates of the seventh pandemic V. cholerae serogroups O1 and O139 biotype El Tor2-4. We show that the isolates from Yemen that were collected during the two epidemiological waves of the epidemic1-the first between 28 September 2016 and 23 April 2017 (25,839 suspected cases) and the second beginning on 24 April 2017 (more than 1 million suspected cases)-are V. cholerae serotype Ogawa isolates from a single sublineage of the seventh pandemic V. cholerae O1 El Tor (7PET) lineage. Using genomic approaches, we link the epidemic in Yemen to global radiations of pandemic V. cholerae and show that this sublineage originated from South Asia and that it caused outbreaks in East Africa before appearing in Yemen. Furthermore, we show that the isolates from Yemen are susceptible to several antibiotics that are commonly used to treat cholera and to polymyxin B, resistance to which is used as a marker of the El Tor biotype.