Journal Article > ResearchFull Text
PLOS One. 2011 December 1; Volume 6 (Issue 12); DOI:10.1371/journal.pone.0028066
Isaakidis P, Cox HS, Varghese B, Montaldo C, Da Silva E, et al.
PLOS One. 2011 December 1; Volume 6 (Issue 12); DOI:10.1371/journal.pone.0028066
India carries one quarter of the global burden of multi-drug resistant TB (MDR-TB) and has an estimated 2.5 million people living with HIV. Despite this reality, provision of treatment for MDR-TB is extremely limited, particularly for HIV-infected individuals. Médecins Sans Frontières (MSF) has been treating HIV-infected MDR-TB patients in Mumbai since May 2007. This is the first report of treatment outcomes among HIV-infected MDR-TB patients in India.
Journal Article > Meta-AnalysisFull Text
Eur Respir J. 2020 March 20; Volume 55 (Issue 3); 1901467.; DOI:10.1183/13993003.01467-2019
Abidi S, Achar J, Assao Neino MM, Bang D, Benedetti A, et al.
Eur Respir J. 2020 March 20; Volume 55 (Issue 3); 1901467.; DOI:10.1183/13993003.01467-2019
We sought to compare the effectiveness of two World Health Organization (WHO)-recommended regimens for the treatment of rifampin- or multidrug-resistant (RR/MDR) tuberculosis (TB): a standardised regimen of 9-12 months (the "shorter regimen") and individualised regimens of ≥20 months ("longer regimens").
We collected individual patient data from observational studies identified through systematic reviews and a public call for data. We included patients meeting WHO eligibility criteria for the shorter regimen: not previously treated with second-line drugs, and with fluoroquinolone- and second-line injectable agent-susceptible RR/MDR-TB. We used propensity score matched, mixed effects meta-regression to calculate adjusted odds ratios and adjusted risk differences (aRDs) for failure or relapse, death within 12 months of treatment initiation and loss to follow-up.
We included 2625 out of 3378 (77.7%) individuals from nine studies of shorter regimens and 2717 out of 13 104 (20.7%) individuals from 53 studies of longer regimens. Treatment success was higher with the shorter regimen than with longer regimens (pooled proportions 80.0% versus 75.3%), due to less loss to follow-up with the former (aRD -0.15, 95% CI -0.17- -0.12). The risk difference for failure or relapse was slightly higher with the shorter regimen overall (aRD 0.02, 95% CI 0-0.05) and greater in magnitude with baseline resistance to pyrazinamide (aRD 0.12, 95% CI 0.07-0.16), prothionamide/ethionamide (aRD 0.07, 95% CI -0.01-0.16) or ethambutol (aRD 0.09, 95% CI 0.04-0.13).
In patients meeting WHO criteria for its use, the standardised shorter regimen was associated with substantially less loss to follow-up during treatment compared with individualised longer regimens and with more failure or relapse in the presence of resistance to component medications. Our findings support the need to improve access to reliable drug susceptibility testing.
We collected individual patient data from observational studies identified through systematic reviews and a public call for data. We included patients meeting WHO eligibility criteria for the shorter regimen: not previously treated with second-line drugs, and with fluoroquinolone- and second-line injectable agent-susceptible RR/MDR-TB. We used propensity score matched, mixed effects meta-regression to calculate adjusted odds ratios and adjusted risk differences (aRDs) for failure or relapse, death within 12 months of treatment initiation and loss to follow-up.
We included 2625 out of 3378 (77.7%) individuals from nine studies of shorter regimens and 2717 out of 13 104 (20.7%) individuals from 53 studies of longer regimens. Treatment success was higher with the shorter regimen than with longer regimens (pooled proportions 80.0% versus 75.3%), due to less loss to follow-up with the former (aRD -0.15, 95% CI -0.17- -0.12). The risk difference for failure or relapse was slightly higher with the shorter regimen overall (aRD 0.02, 95% CI 0-0.05) and greater in magnitude with baseline resistance to pyrazinamide (aRD 0.12, 95% CI 0.07-0.16), prothionamide/ethionamide (aRD 0.07, 95% CI -0.01-0.16) or ethambutol (aRD 0.09, 95% CI 0.04-0.13).
In patients meeting WHO criteria for its use, the standardised shorter regimen was associated with substantially less loss to follow-up during treatment compared with individualised longer regimens and with more failure or relapse in the presence of resistance to component medications. Our findings support the need to improve access to reliable drug susceptibility testing.
Journal Article > Meta-AnalysisFull Text
Lancet. 2020 August 8; Volume 396 (Issue 10248); 402-411.; DOI:10.1016/S0140-6736(20)31316-7
Bisson GP, Bastos ML, Campbell JR, Bang D, Brust JCM, et al.
Lancet. 2020 August 8; Volume 396 (Issue 10248); 402-411.; DOI:10.1016/S0140-6736(20)31316-7
BACKGROUND
HIV-infection is associated with increased mortality during multidrug-resistant tuberculosis treatment, but the extent to which the use of antiretroviral therapy (ART) and anti-tuberculosis medications modify this risk are unclear. Our objective was to evaluate how use of these treatments altered mortality risk in HIV-positive adults with multidrug-resistant tuberculosis.
METHODS
We did an individual patient data meta-analysis of adults 18 years or older with confirmed or presumed multidrug-resistant tuberculosis initiating tuberculosis treatment between 1993 and 2016. Data included ART use and anti-tuberculosis medications grouped according to WHO effectiveness categories. The primary analysis compared HIV-positive with HIV-negative patients in terms of death during multidrug-resistant tuberculosis treatment, excluding those lost to follow up, and was stratified by ART use. Analyses used logistic regression after exact matching on country World Bank income classification and drug resistance and propensity-score matching on age, sex, geographic site, year of multidrug-resistant tuberculosis treatment initiation, previous tuberculosis treatment, directly observed therapy, and acid-fast-bacilli smear-positivity to obtain adjusted odds ratios (aORs) and 95% CIs. Secondary analyses were conducted among those with HIV-infection.
FINDINGS
We included 11 920 multidrug-resistant tuberculosis patients. 2997 (25%) were HIV-positive and on ART, 886 (7%) were HIV-positive and not on ART, and 1749 (15%) had extensively drug-resistant tuberculosis. By use of HIV-negative patients as reference, the aOR of death was 2·4 (95% CI 2·0-2·9) for all patients with HIV-infection, 1·8 (1·5-2·2) for HIV-positive patients on ART, and 4·2 (3·0-5·9) for HIV-positive patients with no or unknown ART. Among patients with HIV, use of at least one WHO Group A drug and specific use of moxifloxacin, levofloxacin, bedaquiline, or linezolid were associated with significantly decreased odds of death.
INTERPRETATION
Use of ART and more effective anti-tuberculosis drugs is associated with lower odds of death among HIV-positive patients with multidrug-resistant tuberculosis. Access to these therapies should be urgently pursued.
HIV-infection is associated with increased mortality during multidrug-resistant tuberculosis treatment, but the extent to which the use of antiretroviral therapy (ART) and anti-tuberculosis medications modify this risk are unclear. Our objective was to evaluate how use of these treatments altered mortality risk in HIV-positive adults with multidrug-resistant tuberculosis.
METHODS
We did an individual patient data meta-analysis of adults 18 years or older with confirmed or presumed multidrug-resistant tuberculosis initiating tuberculosis treatment between 1993 and 2016. Data included ART use and anti-tuberculosis medications grouped according to WHO effectiveness categories. The primary analysis compared HIV-positive with HIV-negative patients in terms of death during multidrug-resistant tuberculosis treatment, excluding those lost to follow up, and was stratified by ART use. Analyses used logistic regression after exact matching on country World Bank income classification and drug resistance and propensity-score matching on age, sex, geographic site, year of multidrug-resistant tuberculosis treatment initiation, previous tuberculosis treatment, directly observed therapy, and acid-fast-bacilli smear-positivity to obtain adjusted odds ratios (aORs) and 95% CIs. Secondary analyses were conducted among those with HIV-infection.
FINDINGS
We included 11 920 multidrug-resistant tuberculosis patients. 2997 (25%) were HIV-positive and on ART, 886 (7%) were HIV-positive and not on ART, and 1749 (15%) had extensively drug-resistant tuberculosis. By use of HIV-negative patients as reference, the aOR of death was 2·4 (95% CI 2·0-2·9) for all patients with HIV-infection, 1·8 (1·5-2·2) for HIV-positive patients on ART, and 4·2 (3·0-5·9) for HIV-positive patients with no or unknown ART. Among patients with HIV, use of at least one WHO Group A drug and specific use of moxifloxacin, levofloxacin, bedaquiline, or linezolid were associated with significantly decreased odds of death.
INTERPRETATION
Use of ART and more effective anti-tuberculosis drugs is associated with lower odds of death among HIV-positive patients with multidrug-resistant tuberculosis. Access to these therapies should be urgently pursued.
Journal Article > Meta-AnalysisFull Text
Lancet. 2018 September 8; Volume 392 (Issue 10150); 821-834.; DOI:10.1016/S0140-6736(18)31644-1
Ahmad N, Ahuja SD, Akkerman OW, Alffenaar JWC, Anderson LF, et al.
Lancet. 2018 September 8; Volume 392 (Issue 10150); 821-834.; DOI:10.1016/S0140-6736(18)31644-1
BACKGROUND
Treatment outcomes for multidrug-resistant tuberculosis remain poor. We aimed to estimate the association of treatment success and death with the use of individual drugs, and the optimal number and duration of treatment with those drugs in patients with multidrug-resistant tuberculosis.
METHODS
In this individual patient data meta-analysis, we searched MEDLINE, Embase, and the Cochrane Library to identify potentially eligible observational and experimental studies published between Jan 1, 2009, and April 30, 2016. We also searched reference lists from all systematic reviews of treatment of multidrug-resistant tuberculosis published since 2009. To be eligible, studies had to report original results, with end of treatment outcomes (treatment completion [success], failure, or relapse) in cohorts of at least 25 adults (aged >18 years). We used anonymised individual patient data from eligible studies, provided by study investigators, regarding clinical characteristics, treatment, and outcomes. Using propensity score-matched generalised mixed effects logistic, or linear regression, we calculated adjusted odds ratios and adjusted risk differences for success or death during treatment, for specific drugs currently used to treat multidrug-resistant tuberculosis, as well as the number of drugs used and treatment duration.
FINDINGS
Of 12 030 patients from 25 countries in 50 studies, 7346 (61%) had treatment success, 1017 (8%) had failure or relapse, and 1729 (14%) died. Compared with failure or relapse, treatment success was positively associated with the use of linezolid (adjusted risk difference 0·15, 95% CI 0·11 to 0·18), levofloxacin (0·15, 0·13 to 0·18), carbapenems (0·14, 0·06 to 0·21), moxifloxacin (0·11, 0·08 to 0·14), bedaquiline (0·10, 0·05 to 0·14), and clofazimine (0·06, 0·01 to 0·10). There was a significant association between reduced mortality and use of linezolid (-0·20, -0·23 to -0·16), levofloxacin (-0·06, -0·09 to -0·04), moxifloxacin (-0·07, -0·10 to -0·04), or bedaquiline (-0·14, -0·19 to -0·10). Compared with regimens without any injectable drug, amikacin provided modest benefits, but kanamycin and capreomycin were associated with worse outcomes. The remaining drugs were associated with slight or no improvements in outcomes. Treatment outcomes were significantly worse for most drugs if they were used despite in-vitro resistance. The optimal number of effective drugs seemed to be five in the initial phase, and four in the continuation phase. In these adjusted analyses, heterogeneity, based on a simulated I2 method, was high for approximately half the estimates for specific drugs, although relatively low for number of drugs and durations analyses.
INTERPRETATION
Although inferences are limited by the observational nature of these data, treatment outcomes were significantly better with use of linezolid, later generation fluoroquinolones, bedaquiline, clofazimine, and carbapenems for treatment of multidrug-resistant tuberculosis. These findings emphasise the need for trials to ascertain the optimal combination and duration of these drugs for treatment of this condition.
Treatment outcomes for multidrug-resistant tuberculosis remain poor. We aimed to estimate the association of treatment success and death with the use of individual drugs, and the optimal number and duration of treatment with those drugs in patients with multidrug-resistant tuberculosis.
METHODS
In this individual patient data meta-analysis, we searched MEDLINE, Embase, and the Cochrane Library to identify potentially eligible observational and experimental studies published between Jan 1, 2009, and April 30, 2016. We also searched reference lists from all systematic reviews of treatment of multidrug-resistant tuberculosis published since 2009. To be eligible, studies had to report original results, with end of treatment outcomes (treatment completion [success], failure, or relapse) in cohorts of at least 25 adults (aged >18 years). We used anonymised individual patient data from eligible studies, provided by study investigators, regarding clinical characteristics, treatment, and outcomes. Using propensity score-matched generalised mixed effects logistic, or linear regression, we calculated adjusted odds ratios and adjusted risk differences for success or death during treatment, for specific drugs currently used to treat multidrug-resistant tuberculosis, as well as the number of drugs used and treatment duration.
FINDINGS
Of 12 030 patients from 25 countries in 50 studies, 7346 (61%) had treatment success, 1017 (8%) had failure or relapse, and 1729 (14%) died. Compared with failure or relapse, treatment success was positively associated with the use of linezolid (adjusted risk difference 0·15, 95% CI 0·11 to 0·18), levofloxacin (0·15, 0·13 to 0·18), carbapenems (0·14, 0·06 to 0·21), moxifloxacin (0·11, 0·08 to 0·14), bedaquiline (0·10, 0·05 to 0·14), and clofazimine (0·06, 0·01 to 0·10). There was a significant association between reduced mortality and use of linezolid (-0·20, -0·23 to -0·16), levofloxacin (-0·06, -0·09 to -0·04), moxifloxacin (-0·07, -0·10 to -0·04), or bedaquiline (-0·14, -0·19 to -0·10). Compared with regimens without any injectable drug, amikacin provided modest benefits, but kanamycin and capreomycin were associated with worse outcomes. The remaining drugs were associated with slight or no improvements in outcomes. Treatment outcomes were significantly worse for most drugs if they were used despite in-vitro resistance. The optimal number of effective drugs seemed to be five in the initial phase, and four in the continuation phase. In these adjusted analyses, heterogeneity, based on a simulated I2 method, was high for approximately half the estimates for specific drugs, although relatively low for number of drugs and durations analyses.
INTERPRETATION
Although inferences are limited by the observational nature of these data, treatment outcomes were significantly better with use of linezolid, later generation fluoroquinolones, bedaquiline, clofazimine, and carbapenems for treatment of multidrug-resistant tuberculosis. These findings emphasise the need for trials to ascertain the optimal combination and duration of these drugs for treatment of this condition.
Journal Article > Meta-AnalysisFull Text
PLOS Med. 2012 August 28; Volume 9 (Issue 8); DOI:10.1371/journal.pmed.1001300
Ahuja SD, Ashkin D, Avendano M, Banerjee R, Bayona J, et al.
PLOS Med. 2012 August 28; Volume 9 (Issue 8); DOI:10.1371/journal.pmed.1001300
Treatment of multidrug resistant tuberculosis (MDR-TB) is lengthy, toxic, expensive, and has generally poor outcomes. We undertook an individual patient data meta-analysis to assess the impact on outcomes of the type, number, and duration of drugs used to treat MDR-TB.
Journal Article > ResearchFull Text
Eur Respir J. 2016 September 1; Volume 48 (Issue 4); DOI:10.1183/13993003.00462-2016
Mitnick CD, White RA, Lu C, Rodriguez CA, Bayona J, et al.
Eur Respir J. 2016 September 1; Volume 48 (Issue 4); DOI:10.1183/13993003.00462-2016
Debate persists about monitoring method (culture or smear) and interval (monthly or less frequently) during treatment for multidrug-resistant tuberculosis (MDR-TB). We analysed existing data and estimated the effect of monitoring strategies on timing of failure detection.We identified studies reporting microbiological response to MDR-TB treatment and solicited individual patient data from authors. Frailty survival models were used to estimate pooled relative risk of failure detection in the last 12 months of treatment; hazard of failure using monthly culture was the reference.Data were obtained for 5410 patients across 12 observational studies. During the last 12 months of treatment, failure detection occurred in a median of 3 months by monthly culture; failure detection was delayed by 2, 7, and 9 months relying on bimonthly culture, monthly smear and bimonthly smear, respectively. Risk (95% CI) of failure detection delay resulting from monthly smear relative to culture is 0.38 (0.34-0.42) for all patients and 0.33 (0.25-0.42) for HIV-co-infected patients.Failure detection is delayed by reducing the sensitivity and frequency of the monitoring method. Monthly monitoring of sputum cultures from patients receiving MDR-TB treatment is recommended. Expanded laboratory capacity is needed for high-quality culture, and for smear microscopy and rapid molecular tests.
Journal Article > ReviewFull Text
Lancet Infect Dis. 2013 March 24; Volume 13 (Issue 5); DOI:10.1016/S1473-3099(13)70030-6
Abubakar I, Zignol M, Falzon D, Raviglione M, Ditui L, et al.
Lancet Infect Dis. 2013 March 24; Volume 13 (Issue 5); DOI:10.1016/S1473-3099(13)70030-6
Journal Article > ReviewAbstract
J Infect Dis. 2012 April 3; Volume 205 (Issue suppl_2); DOI:10.1093/infdis/jir858
Zumla A, Abubakar I, Raviglione M, Hoelscher M, Ditui L, et al.
J Infect Dis. 2012 April 3; Volume 205 (Issue suppl_2); DOI:10.1093/infdis/jir858
Tuberculosis was declared a global emergency by the World Health Organization (WHO) in 1993. Following the declaration and the promotion in 1995 of directly observed treatment short course (DOTS), a cost-effective strategy to contain the tuberculosis epidemic, nearly 7 million lives have been saved compared with the pre-DOTS era, high cure rates have been achieved in most countries worldwide, and the global incidence of tuberculosis has been in a slow decline since the early 2000s. However, the emergence and spread of multidrug-resistant (MDR) tuberculosis, extensively drug-resistant (XDR) tuberculosis, and more recently, totally drug-resistant tuberculosis pose a threat to global tuberculosis control. Multidrug-resistant tuberculosis is a man-made problem. Laboratory facilities for drug susceptibility testing are inadequate in most tuberculosis-endemic countries, especially in Africa; thus diagnosis is missed, routine surveillance is not implemented, and the actual numbers of global drug-resistant tuberculosis cases have yet to be estimated. This exposes an ominous situation and reveals an urgent need for commitment by national programs to health system improvement because the response to MDR tuberculosis requires strong health services in general. Multidrug-resistant tuberculosis and XDR tuberculosis greatly complicate patient management within resource-poor national tuberculosis programs, reducing treatment efficacy and increasing the cost of treatment to the extent that it could bankrupt healthcare financing in tuberculosis-endemic areas. Why, despite nearly 20 years of WHO-promoted activity and >12 years of MDR tuberculosis-specific activity, has the country response to the drug-resistant tuberculosis epidemic been so ineffectual? The current dilemmas, unanswered questions, operational issues, challenges, and priority needs for global drug resistance screening and surveillance, improved treatment regimens, and management of outcomes and prevention of DR tuberculosis are discussed.
Journal Article > Meta-AnalysisFull Text
Int J Infect Dis. 2020 February 1; Volume 92; DOI:10.1016/j.ijid.2020.01.042
Migliori GB, Tiberi S, Zumla A, Petersen E, Chakaya JM, et al.
Int J Infect Dis. 2020 February 1; Volume 92; DOI:10.1016/j.ijid.2020.01.042
The continuous flow of new research articles on MDR-TB diagnosis, treatment, prevention and rehabilitation requires frequent update of existing guidelines. This review is aimed at providing clinicians and public health staff with an updated and easy-to-consult document arising from consensus of Global Tuberculosis Network (GTN) experts. The core published documents and guidelines have been reviewed including the recently published MDR-TB WHO rapid advice and ATS/CDC/ERS/IDSA guidelines. After a rapid review of epidemiology and risk factors, the clinical priorities on MDR-TB diagnosis (including whole genome sequencing and drug-susceptibility testing interpretations) and treatment (treatment design and management, TB in children) are discussed. Furthermore, the review comprehensively describes the latest information on contact tracing and LTBI management in MDR-TB contacts, while providing guidance on post-treatment functional evaluation and rehabilitation of TB sequelae, infection control and other public health priorities.
Journal Article > ResearchFull Text
Int J Tuberc Lung Dis. 2023 August 1; Volume 27 (Issue 8); 584-598.; DOI:10.5588/ijtld.23.0085
Chiang SS, Graham SM, Schaaf HS, Marais BJ, Sant’Anna CC, et al.
Int J Tuberc Lung Dis. 2023 August 1; Volume 27 (Issue 8); 584-598.; DOI:10.5588/ijtld.23.0085
BACKGROUND
These clinical standards aim to provide guidance for diagnosis, treatment, and management of drug-susceptible TB in children and adolescents.
METHODS
Fifty-two global experts in paediatric TB participated in a Delphi consensus process. After eight rounds of revisions, 51/52 (98%) participants endorsed the final document.
RESULTS
Eight standards were identified: Standard 1, Age and developmental stage are critical considerations in the assessment and management of TB; Standard 2, Children and adolescents with symptoms and signs of TB disease should undergo prompt evaluation, and diagnosis and treatment initiation should not depend on microbiological confirmation; Standard 3, Treatment initiation is particularly urgent in children and adolescents with presumptive TB meningitis and disseminated (miliary) TB; Standard 4, Children and adolescents should be treated with an appropriate weight-based regimen; Standard 5, Treating TB infection (TBI) is important to prevent disease; Standard 6, Children and adolescents should receive home-based/community-based treatment support whenever possible; Standard 7, Children, adolescents, and their families should be provided age-appropriate support to optimise engagement in care and clinical outcomes; and Standard 8, Case reporting and contact tracing should be conducted for each child and adolescent.
CONCLUSION
These consensus-based clinical standards, which should be adapted to local contexts, will improve the care of children and adolescents affected by TB.
These clinical standards aim to provide guidance for diagnosis, treatment, and management of drug-susceptible TB in children and adolescents.
METHODS
Fifty-two global experts in paediatric TB participated in a Delphi consensus process. After eight rounds of revisions, 51/52 (98%) participants endorsed the final document.
RESULTS
Eight standards were identified: Standard 1, Age and developmental stage are critical considerations in the assessment and management of TB; Standard 2, Children and adolescents with symptoms and signs of TB disease should undergo prompt evaluation, and diagnosis and treatment initiation should not depend on microbiological confirmation; Standard 3, Treatment initiation is particularly urgent in children and adolescents with presumptive TB meningitis and disseminated (miliary) TB; Standard 4, Children and adolescents should be treated with an appropriate weight-based regimen; Standard 5, Treating TB infection (TBI) is important to prevent disease; Standard 6, Children and adolescents should receive home-based/community-based treatment support whenever possible; Standard 7, Children, adolescents, and their families should be provided age-appropriate support to optimise engagement in care and clinical outcomes; and Standard 8, Case reporting and contact tracing should be conducted for each child and adolescent.
CONCLUSION
These consensus-based clinical standards, which should be adapted to local contexts, will improve the care of children and adolescents affected by TB.