Human immunodeficiency virus (HIV) co-infection is a major challenge for visceral leishmaniasis (VL) control, particularly in Ethiopia where the incidence of both pathogens is high. VL-HIV often leads to high rates of antileishmanial treatment failure and recurrent VL disease relapses. Considering the high prevalence of HIV and Leishmania in the Ethiopian population, preventing the progression of asymptomatic Leishmania infection to disease would be a valuable asset to VL disease control and to the clinical management of people living with HIV (PLWH). However, such a strategy requires good understanding of risk factors for VL development. In immunocompetent individuals living in Brazil, India, or Iran, the Human Leukocyte Antigen (HLA) gene region has been associated with VL development. We used NanoTYPE, an Oxford Nanopore Technologies sequencing-based HLA genotyping method, to detect associations between HLA genotype and VL development by comparing 78 PLWH with VL history and 46 PLWH that controlled a Leishmania infection, all living in a VL endemic region of North-West Ethiopia. We identified an association between HLA-A*03:01 and increased risk of VL development (OR = 3.89). These data provide candidate HLA alleles that can be further explored for inclusion in a potential Leishmania screen-and-treat strategy in VL endemic regions.
BACKGROUND
Targeted preventive strategies in persons living with HIV (PLWH) require markers to predict visceral leishmaniasis (VL). We conducted a longitudinal study in a HIV-cohort in VL-endemic North-West Ethiopia to 1) describe the pattern of Leishmania markers preceding VL; 2) identify Leishmania markers predictive of VL; 3) develop a clinical management algorithm according to predicted VL risk levels.
METHODS
The PreLeisH study followed 490 adult PLWH free of VL at enrolment for up to two years (2017-2021). Blood RT-PCR targeting Leishmania kDNA, Leishmania serology and Leishmania urine antigen test (KAtex) were performed every 3-6 months. We calculated the sensitivity/specificity of the Leishmania markers for predicting VL and developed an algorithm for distinct clinical management strategies, with VL risk categories defined based on VL history, CD4 count and Leishmania markers (rK39 RDT & RT-PCR).
FINDINGS
At enrolment, 485 (99%) study participants were on antiretroviral treatment; 360/490 (73.5%) were male; the median baseline CD4 count was 392 (IQR 259-586) cells/μL; 135 (27.5%) had previous VL. Incident VL was diagnosed in 34 (6.9%), with 32 (94%) displaying positive Leishmania markers before VL. In those without VL history, baseline rK39 RDT had 60% sensitivity and 84% specificity to predict VL; in patients with previous VL, RT-PCR had 71% sensitivity and 95% specificity. The algorithm defined 442 (92.3%) individuals at low VL risk (routine follow-up), 31 (6.5%) as moderate risk (secondary prophylaxis) and six (1.2%) as high risk (early treatment).
INTERPRETATION
Leishmania infection markers can predict VL risk in PLWH. Interventional studies targeting those at high risk are needed.
FUNDING
The PreLeisH study was supported by grants from the Department of Economy, Science and Innovation of the Flemish Government, Belgium (757013) and the Directorate-General for Development Cooperation and Humanitarian Aid (DGD), Belgium (BE-BCE_KBO-0410057701-prg2022-5-ET).