Objective: To assess the outcomes of cholera and measles outbreak alerts that were received in the PUC surveillance system between 2016 and 2018.
Design: This was a retrospective cross-sectional study.
Results: Overall, 459 outbreak alerts were detected, respectively 69% and 31% for cholera and measles. Of these, 32% were actively detected and 68% passively detected. Most alerts (90%) required no intervention and 10% of alerts had an intervention. There were 25% investigations that were not carried out despite thresholds being met; 17% interventions were not performed, the main reported reason being PUC operational capacity was exceeded. Confirmed cholera and measles outbreaks that met an investigation threshold comprised respectively 90% and 76% of alerts; 59% of measles investigations were followed by a delayed outbreak response of 14 days (n = 10 outbreaks).
Conclusion: Some alerts for cholera and measles outbreaks that were detected in the PUC system did not lead to a response even when required; the main reported reason was limited operational capacity to respond to all of them.
BACKGROUND
Traditionally in the Democratic Republic of the Congo (DRC), centralised Ebola treatment centres (ETCs) have been set exclusively for Ebola virus disease (EVD) case management during outbreaks. During the 2020 EVD outbreak in DRC’s Equateur Province, existing health centres were equipped as decentralised treatment centres (DTC) to improve access for patients with suspected EVD. Between ETCs and DTCs, we compared the time from symptom onset to admission and diagnosis among patients with suspected EVD.
METHODS
This was a cohort study based on analysis of a line-list containing demographic and clinical information of patients with suspected EVD admitted to any EVD health facility during the outbreak.
RESULTS
Of 2359 patients with suspected EVD, 363 (15%) were first admitted to a DTC. Of 1996 EVD-suspected patients initially admitted to an ETC, 72 (4%) were confirmed as EVD-positive. Of 363 EVD-suspected patients initially admitted to a DTC, 6 (2%) were confirmed and managed as EVD-positive in the DTC. Among all EVD-suspected patients, the median (interquartile range) duration between symptom onset and admission was 2 (1-4) days in a DTC compared to 4 (2-7) days in an ETC (p<0.001). Similarly, time from symptom onset to admission was significantly shorter among EVD-suspected patients ultimately diagnosed as EVD-negative.
CONCLUSIONS
Since <5% of the EVD-suspected patients admitted were eventually diagnosed with EVD, there is a need for better screening to optimise resource utilization and outbreak control. Only one in seven EVD-suspected patients were admitted to a DTC first, as the DTCs were piloted in a limited and phased manner. However, there is a case to be made for considering decentralized care especially in remote and hard-to-reach areas in places like the DRC to facilitate early access to care, contain viral shedding by patients with EVD and ensure no disrupted provision of non-EVD services.
Cholera epidemics occur frequently in low-income countries affected by concurrent humanitarian crises. Evaluations of these epidemic response remains largely unpublished and there is a need to generate evidence on response efforts to inform future programmes. This review of MSF cholera epidemic responses aimed to describe the main characteristics of the cholera epidemics and related responses in these three countries, to identify challenges to different intervention strategies based on available data; and to make recommendations for epidemic prevention and control practice and policy.
METHODS
Case studies from the Democratic Republic of Congo, Malawi and Mozambique were purposively selected by MSF for this review due to the documented burden of cholera in each country, frequency of cholera outbreaks, and risk of humanitarian crises. Data were extracted on the characteristics of the epidemics; time between alert and response; and, the delivery of health and water, sanitation and hygiene interventions. A Theory of Change for cholera response programmes was built to assess factors that affected implementation of the responses.
RESULTS AND CONCLUSIONS
20 epidemic response reports were identified, 15 in DRC, one in Malawi and four in Mozambique. All contexts experienced concurrent humanitarian crises, either armed conflict or natural disasters. Across the settings, median time between the date of alert and date of the start of the response by MSF was 23 days (IQR 14-41). Almost all responses targeted interventions community-wide, and all responses implemented in-patient treatment of suspected cholera cases in either established health care facilities (HCFs) or temporary cholera treatment units (CTUs). In three responses, interventions were delivered as case-area targeted interventions (CATI) and four responses targeted households of admitted suspected cholera cases. CATI or delivery of interventions to households of admitted suspected cases occurred from 2017 onwards only. Overall, 74 factors affecting implementation were identified including delayed supplies of materials, insufficient quantities of materials and limited or lack of coordination with local government or other agencies. Based on this review, the following recommendations are made to improve cholera prevention and control efforts: explore improved models for epidemic preparedness, including rapid mobilisation of supplies and deployment of trained staff; invest in and strengthen partnerships with national and local government and other agencies; and to standardise reporting templates that allow for rigorous and structured evaluations within and across countries to provide consistent and accessible data.
Cholera remains a leading cause of infectious disease outbreaks globally, and a major public health threat in complex emergencies. Hygiene kits distributed to cholera case-households have previously shown an effect in reducing cholera incidence and are recommended by Médecins Sans Frontières (MSF) for distribution to admitted patients and accompanying household members upon admission to health care facilities (HCFs).
METHODS
This process evaluation documented the implementation, participant response and context of hygiene kit distribution by MSF during a 2018 cholera outbreak in Kasaï-Oriental, Democratic Republic of Congo (DRC). The study population comprised key informant interviews with seven MSF staff, 17 staff from other organisations and a random sample of 27 hygiene kit recipients. Structured observations were conducted of hygiene kit demonstrations and health promotion, and programme reports were analysed to triangulate data.
RESULTS AND CONCLUSIONS
Between Week (W) 28-48 of the 2018 cholera outbreak in Kasaï-Oriental, there were 667 suspected cholera cases with a 5% case fatality rate (CFR). Across seven HCFs supported by MSF, 196 patients were admitted with suspected cholera between W43-W47 and hygiene kit were provided to patients upon admission and health promotion at the HCF was conducted to accompanying household contacts 5-6 times per day. Distribution of hygiene kits was limited and only 52% of admitted suspected cholera cases received a hygiene kit. The delay of the overall response, delayed supply and insufficient quantities of hygiene kits available limited the coverage and utility of the hygiene kits, and may have diminished the effectiveness of the intervention. The integration of a WASH intervention for cholera control at the point of patient admission is a growing trend and promising intervention for case-targeted cholera responses. However, the barriers identified in this study warrant consideration in subsequent cholera responses and further research is required to identify ways to improve implementation and delivery of this intervention.
Household contacts of cholera cases are at a greater risk of Vibrio cholerae infection than the general population. There is currently no agreed standard of care for household contacts, despite their high risk of infection, in cholera response strategies. In 2018, hygiene kit distribution and health promotion was recommended by Médecins Sans Frontières for admitted patients and accompanying household members on admission to a cholera treatment unit in the Democratic Republic of Congo.
METHODS
investigate the effectiveness of the intervention and risk factors for cholera infection, we conducted a prospective cohort study and followed household contacts for 7 days after patient admission. Clinical surveillance among household contacts was based on self-reported symptoms of cholera and diarrhoea, and environmental surveillance through the collection and analysis of food and water samples.
RESULTS
From 94 eligible households, 469 household contacts were enrolled and 444 completed follow-up. Multivariate analysis suggested evidence of a dose-response relationship with increased kit use associated with decreased relative risk of suspected cholera: household contacts in the high kit-use group had a 66% lower incidence of suspected cholera (adjusted risk ratio (aRR) 0.34, 95% CI 0.11 to 1.03, p=0.055), the mid-use group had a 53% lower incidence (aRR 0.47, 95% CI 0.17 to 1.29, p=1.44) and low-use group had 22% lower incidence (aRR 0.78, 95% CI 0.24 to 2.53, p=0.684), compared with household contacts without a kit. Drinking water contamination was significantly reduced among households in receipt of a kit. There was no significant effect on self-reported diarrhoea or food contamination.
CONCLUSION
The integration of a hygiene kit intervention to case-households may be effective in reducing cholera transmission among household contacts and environmental contamination within the household. Further work is required to evaluate whether other proactive localised distribution among patients and case-households or to households surrounding cholera cases can be used in future cholera response programmes in emergency contexts.