Journal Article > CommentaryFull Text
J Adolesc Health. 2023 March 1; Volume 72 (Issue 3); 323-331.; DOI:10.1016/j.jadohealth.2022.10.036
Chiang SS, Waterous PM, Atieno VF, Bernays S, Bondarenko Y, et al.
J Adolesc Health. 2023 March 1; Volume 72 (Issue 3); 323-331.; DOI:10.1016/j.jadohealth.2022.10.036
Journal Article > ResearchFull Text
Lancet Infect Dis. 2023 March 1; Volume 23 (Issue 3); 341-351.; DOI:10.1016/S1473-3099(22)00668-5
Marcy O, Wobudeya E, Font H, Vessière A, Chabala C, et al.
Lancet Infect Dis. 2023 March 1; Volume 23 (Issue 3); 341-351.; DOI:10.1016/S1473-3099(22)00668-5
BACKGROUND
Tuberculosis diagnosis might be delayed or missed in children with severe pneumonia because this diagnosis is usually only considered in cases of prolonged symptoms or antibiotic failure. Systematic tuberculosis detection at hospital admission could increase case detection and reduce mortality.
METHODS
We did a stepped-wedge cluster-randomised trial in 16 hospitals from six countries (Cambodia, Cameroon, Côte d'Ivoire, Mozambique, Uganda, and Zambia) with high incidence of tuberculosis. Children younger than 5 years with WHO-defined severe pneumonia received either the standard of care (control group) or standard of care plus Xpert MTB/RIF Ultra (Xpert Ultra; Cepheid, Sunnyvale, CA, USA) on nasopharyngeal aspirate and stool samples (intervention group). Clusters (hospitals) were progressively switched from control to intervention at 5-week intervals, using a computer-generated random sequence, stratified on incidence rate of tuberculosis at country level, and masked to teams until 5 weeks before switch. We assessed the effect of the intervention on primary (12-week all-cause mortality) and secondary (including tuberculosis diagnosis) outcomes, using generalised linear mixed models. The primary analysis was by intention to treat. We described outcomes in children with severe acute malnutrition in a post hoc analysis. This study is registered with ClinicalTrials.gov (NCT03831906) and the Pan African Clinical Trial Registry (PACTR202101615120643).
FINDINGS
From March 21, 2019, to March 30, 2021, we enrolled 1401 children in the control group and 1169 children in the intervention group. In the intervention group, 1140 (97·5%) children had nasopharyngeal aspirates and 942 (80·6%) had their stool collected; 24 (2·1%) had positive Xpert Ultra. At 12 weeks, 110 (7·9%) children in the control group and 91 (7·8%) children in the intervention group had died (adjusted odds ratio [OR] 0·986, 95% CI 0·597-1·630, p=0·957), and 74 (5·3%) children in the control group and 88 (7·5%) children in the intervention group had tuberculosis diagnosed (adjusted OR 1·238, 95% CI 0·696-2·202, p=0·467). In children with severe acute malnutrition, 57 (23·8%) of 240 children in the control group and 53 (17·8%) of 297 children in the intervention group died, and 36 (15·0%) of 240 children in the control group and 56 (18·9%) of 297 children in the intervention group were diagnosed with tuberculosis. The main adverse events associated with nasopharyngeal aspirates were samples with blood in 312 (27·3%) of 1147 children with nasopharyngeal aspirates attempted, dyspnoea or SpO2 less than 95% in 134 (11·4%) of children, and transient respiratory distress or SpO2 less than 90% in 59 (5·2%) children. There was no serious adverse event related to nasopharyngeal aspirates reported during the trial.
INTERPRETATION
Systematic molecular tuberculosis detection at hospital admission did not reduce mortality in children with severe pneumonia. High treatment and microbiological confirmation rates support more systematic use of Xpert Ultra in this group, notably in children with severe acute malnutrition.
Tuberculosis diagnosis might be delayed or missed in children with severe pneumonia because this diagnosis is usually only considered in cases of prolonged symptoms or antibiotic failure. Systematic tuberculosis detection at hospital admission could increase case detection and reduce mortality.
METHODS
We did a stepped-wedge cluster-randomised trial in 16 hospitals from six countries (Cambodia, Cameroon, Côte d'Ivoire, Mozambique, Uganda, and Zambia) with high incidence of tuberculosis. Children younger than 5 years with WHO-defined severe pneumonia received either the standard of care (control group) or standard of care plus Xpert MTB/RIF Ultra (Xpert Ultra; Cepheid, Sunnyvale, CA, USA) on nasopharyngeal aspirate and stool samples (intervention group). Clusters (hospitals) were progressively switched from control to intervention at 5-week intervals, using a computer-generated random sequence, stratified on incidence rate of tuberculosis at country level, and masked to teams until 5 weeks before switch. We assessed the effect of the intervention on primary (12-week all-cause mortality) and secondary (including tuberculosis diagnosis) outcomes, using generalised linear mixed models. The primary analysis was by intention to treat. We described outcomes in children with severe acute malnutrition in a post hoc analysis. This study is registered with ClinicalTrials.gov (NCT03831906) and the Pan African Clinical Trial Registry (PACTR202101615120643).
FINDINGS
From March 21, 2019, to March 30, 2021, we enrolled 1401 children in the control group and 1169 children in the intervention group. In the intervention group, 1140 (97·5%) children had nasopharyngeal aspirates and 942 (80·6%) had their stool collected; 24 (2·1%) had positive Xpert Ultra. At 12 weeks, 110 (7·9%) children in the control group and 91 (7·8%) children in the intervention group had died (adjusted odds ratio [OR] 0·986, 95% CI 0·597-1·630, p=0·957), and 74 (5·3%) children in the control group and 88 (7·5%) children in the intervention group had tuberculosis diagnosed (adjusted OR 1·238, 95% CI 0·696-2·202, p=0·467). In children with severe acute malnutrition, 57 (23·8%) of 240 children in the control group and 53 (17·8%) of 297 children in the intervention group died, and 36 (15·0%) of 240 children in the control group and 56 (18·9%) of 297 children in the intervention group were diagnosed with tuberculosis. The main adverse events associated with nasopharyngeal aspirates were samples with blood in 312 (27·3%) of 1147 children with nasopharyngeal aspirates attempted, dyspnoea or SpO2 less than 95% in 134 (11·4%) of children, and transient respiratory distress or SpO2 less than 90% in 59 (5·2%) children. There was no serious adverse event related to nasopharyngeal aspirates reported during the trial.
INTERPRETATION
Systematic molecular tuberculosis detection at hospital admission did not reduce mortality in children with severe pneumonia. High treatment and microbiological confirmation rates support more systematic use of Xpert Ultra in this group, notably in children with severe acute malnutrition.
Journal Article > ResearchFull Text
Int J Tuberc Lung Dis. 2023 August 1; Volume 27 (Issue 8); 584-598.; DOI:10.5588/ijtld.23.0085
Chiang SS, Graham SM, Schaaf HS, Marais BJ, Sant’Anna CC, et al.
Int J Tuberc Lung Dis. 2023 August 1; Volume 27 (Issue 8); 584-598.; DOI:10.5588/ijtld.23.0085
BACKGROUND
These clinical standards aim to provide guidance for diagnosis, treatment, and management of drug-susceptible TB in children and adolescents.
METHODS
Fifty-two global experts in paediatric TB participated in a Delphi consensus process. After eight rounds of revisions, 51/52 (98%) participants endorsed the final document.
RESULTS
Eight standards were identified: Standard 1, Age and developmental stage are critical considerations in the assessment and management of TB; Standard 2, Children and adolescents with symptoms and signs of TB disease should undergo prompt evaluation, and diagnosis and treatment initiation should not depend on microbiological confirmation; Standard 3, Treatment initiation is particularly urgent in children and adolescents with presumptive TB meningitis and disseminated (miliary) TB; Standard 4, Children and adolescents should be treated with an appropriate weight-based regimen; Standard 5, Treating TB infection (TBI) is important to prevent disease; Standard 6, Children and adolescents should receive home-based/community-based treatment support whenever possible; Standard 7, Children, adolescents, and their families should be provided age-appropriate support to optimise engagement in care and clinical outcomes; and Standard 8, Case reporting and contact tracing should be conducted for each child and adolescent.
CONCLUSION
These consensus-based clinical standards, which should be adapted to local contexts, will improve the care of children and adolescents affected by TB.
These clinical standards aim to provide guidance for diagnosis, treatment, and management of drug-susceptible TB in children and adolescents.
METHODS
Fifty-two global experts in paediatric TB participated in a Delphi consensus process. After eight rounds of revisions, 51/52 (98%) participants endorsed the final document.
RESULTS
Eight standards were identified: Standard 1, Age and developmental stage are critical considerations in the assessment and management of TB; Standard 2, Children and adolescents with symptoms and signs of TB disease should undergo prompt evaluation, and diagnosis and treatment initiation should not depend on microbiological confirmation; Standard 3, Treatment initiation is particularly urgent in children and adolescents with presumptive TB meningitis and disseminated (miliary) TB; Standard 4, Children and adolescents should be treated with an appropriate weight-based regimen; Standard 5, Treating TB infection (TBI) is important to prevent disease; Standard 6, Children and adolescents should receive home-based/community-based treatment support whenever possible; Standard 7, Children, adolescents, and their families should be provided age-appropriate support to optimise engagement in care and clinical outcomes; and Standard 8, Case reporting and contact tracing should be conducted for each child and adolescent.
CONCLUSION
These consensus-based clinical standards, which should be adapted to local contexts, will improve the care of children and adolescents affected by TB.
Journal Article > ResearchFull Text
J Pediatric Infect Dis Soc. 2023 October 5; Volume 12 (Issue 11); 574-580.; DOI:10.1093/jpids/piad082
Chupradit S, Wamalwa DC, Maleche-Obimbo E, Kekitiinwa AR, Mwanga-Amumpaire J, et al.
J Pediatric Infect Dis Soc. 2023 October 5; Volume 12 (Issue 11); 574-580.; DOI:10.1093/jpids/piad082
BACKGROUND
The pharmacokinetics of abacavir (ABC) in African children living with HIV (CLHIV) weighing < 14 kg and receiving pediatric fixed dose combinations (FDC) according to WHO weight bands dosing are limited. An ABC population pharmacokinetic model was developed to evaluate ABC exposure across different World Health Organization (WHO) weight bands.
METHODS
Children enrolled in the LIVING study in Kenya and Uganda receiving ABC/lamivudine (3TC) dispersible tablets (60/30 mg) according to WHO weight bands. A population approach was used to determine the pharmacokinetic parameters. Monte Carlo simulations were conducted using an in silico population with demographic characteristics associated with African CLHIV. ABC exposures (AUC0–24) of 6.4–50.4 mg h/L were used as targets.
RESULTS
Plasma samples were obtained from 387 children. A 1-compartment model with allometric scaling of clearance (CL/F) and volume of distribution (V/F) according to body weight best characterized the pharmacokinetic data of ABC. The maturation of ABC CL/F was characterized using a sigmoidal Emax model dependent on postnatal age (50% of adult CL/F reached by 0.48 years of age). Exposures to ABC were within the target range for children weighing 6.0–24.9 kg, but children weighing 3–5.9 kg were predicted to be overexposed.
CONCLUSIONS
Lowering the ABC dosage to 30 mg twice daily or 60 mg once daily for children weighing 3–5.9 kg increased the proportion of children within the target and provided comparable exposures. Further clinical study is required to investigate clinical implications and safety of the proposed alternative ABC doses.
The pharmacokinetics of abacavir (ABC) in African children living with HIV (CLHIV) weighing < 14 kg and receiving pediatric fixed dose combinations (FDC) according to WHO weight bands dosing are limited. An ABC population pharmacokinetic model was developed to evaluate ABC exposure across different World Health Organization (WHO) weight bands.
METHODS
Children enrolled in the LIVING study in Kenya and Uganda receiving ABC/lamivudine (3TC) dispersible tablets (60/30 mg) according to WHO weight bands. A population approach was used to determine the pharmacokinetic parameters. Monte Carlo simulations were conducted using an in silico population with demographic characteristics associated with African CLHIV. ABC exposures (AUC0–24) of 6.4–50.4 mg h/L were used as targets.
RESULTS
Plasma samples were obtained from 387 children. A 1-compartment model with allometric scaling of clearance (CL/F) and volume of distribution (V/F) according to body weight best characterized the pharmacokinetic data of ABC. The maturation of ABC CL/F was characterized using a sigmoidal Emax model dependent on postnatal age (50% of adult CL/F reached by 0.48 years of age). Exposures to ABC were within the target range for children weighing 6.0–24.9 kg, but children weighing 3–5.9 kg were predicted to be overexposed.
CONCLUSIONS
Lowering the ABC dosage to 30 mg twice daily or 60 mg once daily for children weighing 3–5.9 kg increased the proportion of children within the target and provided comparable exposures. Further clinical study is required to investigate clinical implications and safety of the proposed alternative ABC doses.