Conference Material > Poster
Papadimitriou V, Ciglenecki I, Gonzalez A, Macher E, Martinez Garcia D, et al.
MSF Scientific Days UK 2018: Research. 2018 May 14; DOI:10.7490/f1000research.1115457.1
Journal Article > ResearchFull Text
Vaccine. 2018 May 8; Volume 36 (Issue 25); 3674-3680.; DOI:10.1016/j.vaccine.2018.05.023
Coldiron ME, Guindo O, Makarimi R, Soumana I, Matar Seck A, et al.
Vaccine. 2018 May 8; Volume 36 (Issue 25); 3674-3680.; DOI:10.1016/j.vaccine.2018.05.023
BACKGROUND
Rotavirus remains a major cause of diarrhea among children under 5 years of age. The efficacy of RotaSIIL, a pentavalent rotavirus vaccine, was shown in an event-driven trial in Niger. We describe the two-year safety follow-up of this trial.
METHODS
Follow-up of safety outcomes began upon administration of the first dose of RotaSIIL or placebo. Adverse events were followed until 28 days after the third dose, and serious adverse events were followed until 2 years of age. Suspected cases of intussusception were evaluated at first point of contact and then referred to hospital for surgical evaluation. Causes of death were obtained by chart review and verbal autopsy. Passive surveillance was carried out in health centers. Community health workers carried out active surveillance in villages. Between-group differences were evaluated using the chi-squared test and Fisher's exact test.
RESULTS
A total of 4092 children were randomized, and 4086 received at least one dose of RotaSIIL or placebo, constituting the intention-to-treat population, who accrued a total of 7385 child-years of follow-up time. At two years of follow-up, 58 (2.8%) participants who received RotaSIIL and 49 (2.4%) participants who received placebo had died (p = 0.38). Most deaths were due to infectious causes common to the study area. One participant had confirmed intussusception, 542 days after receiving the third dose of RotaSIIL. A total of 395 (19.3%) participants receiving RotaSIIL and 419 (20.5%) participants receiving placebo experienced any serious adverse event (p = 0.36). Most serious adverse events were hospitalizations due to infection (malaria, lower respiratory tract infection and gastroenteritis) or marasmus. Overall, 1474 (72.1%) participants receiving RotaSIIL and 1456 (71.1%) participants receiving placebo had at least one adverse event (p = 0.49) in the follow-up period.
CONCLUSIONS
At two years of follow-up, RotaSIIL was found to be safe.
Rotavirus remains a major cause of diarrhea among children under 5 years of age. The efficacy of RotaSIIL, a pentavalent rotavirus vaccine, was shown in an event-driven trial in Niger. We describe the two-year safety follow-up of this trial.
METHODS
Follow-up of safety outcomes began upon administration of the first dose of RotaSIIL or placebo. Adverse events were followed until 28 days after the third dose, and serious adverse events were followed until 2 years of age. Suspected cases of intussusception were evaluated at first point of contact and then referred to hospital for surgical evaluation. Causes of death were obtained by chart review and verbal autopsy. Passive surveillance was carried out in health centers. Community health workers carried out active surveillance in villages. Between-group differences were evaluated using the chi-squared test and Fisher's exact test.
RESULTS
A total of 4092 children were randomized, and 4086 received at least one dose of RotaSIIL or placebo, constituting the intention-to-treat population, who accrued a total of 7385 child-years of follow-up time. At two years of follow-up, 58 (2.8%) participants who received RotaSIIL and 49 (2.4%) participants who received placebo had died (p = 0.38). Most deaths were due to infectious causes common to the study area. One participant had confirmed intussusception, 542 days after receiving the third dose of RotaSIIL. A total of 395 (19.3%) participants receiving RotaSIIL and 419 (20.5%) participants receiving placebo experienced any serious adverse event (p = 0.36). Most serious adverse events were hospitalizations due to infection (malaria, lower respiratory tract infection and gastroenteritis) or marasmus. Overall, 1474 (72.1%) participants receiving RotaSIIL and 1456 (71.1%) participants receiving placebo had at least one adverse event (p = 0.49) in the follow-up period.
CONCLUSIONS
At two years of follow-up, RotaSIIL was found to be safe.
Journal Article > ReviewFull Text
Clin Infect Dis. 2019 August 19; Volume 71 (Issue 1); 89-97.; DOI:10.1093/cid/ciz808
Truelove SA, Keegan LT, Moss WJ, Chaisson LH, Macher E, et al.
Clin Infect Dis. 2019 August 19; Volume 71 (Issue 1); 89-97.; DOI:10.1093/cid/ciz808
BACKGROUND
Diphtheria, once a major cause of childhood morbidity and mortality, all but disappeared following introduction of diphtheria vaccine. Recent outbreaks highlight the risk diphtheria poses when civil unrest interrupts vaccination and healthcare access. Lack of interest over the last century resulted in knowledge gaps about diphtheria’s epidemiology, transmission, and control.
METHODS
We conducted 9 distinct systematic reviews on PubMed and Scopus (March–May 2018). We pooled and analyzed extracted data to fill in these key knowledge gaps.
RESULTS
We identified 6934 articles, reviewed 781 full texts, and included 266. From this, we estimate that the median incubation period is 1.4 days. On average, untreated cases are colonized for 18.5 days (95% credible interval [CrI], 17.7–19.4 days), and 95% clear Corynebacterium diphtheriae within 48 days (95% CrI, 46–51 days). Asymptomatic carriers cause 76% (95% confidence interval, 59%–87%) fewer cases over the course of infection than symptomatic cases. The basic reproductive number is 1.7–4.3. Receipt of 3 doses of diphtheria toxoid vaccine is 87% (95% CrI, 68%–97%) effective against symptomatic disease and reduces transmission by 60% (95% CrI, 51%–68%). Vaccinated individuals can become colonized and transmit; consequently, vaccination alone can only interrupt transmission in 28% of outbreak settings, making isolation and antibiotics essential. While antibiotics reduce the duration of infection, they must be paired with diphtheria antitoxin to limit morbidity.
CONCLUSIONS
Appropriate tools to confront diphtheria exist; however, accurate understanding of the unique characteristics is crucial and lifesaving treatments must be made widely available. This comprehensive update provides clinical and public health guidance for diphtheria-specific preparedness and response.
Diphtheria, once a major cause of childhood morbidity and mortality, all but disappeared following introduction of diphtheria vaccine. Recent outbreaks highlight the risk diphtheria poses when civil unrest interrupts vaccination and healthcare access. Lack of interest over the last century resulted in knowledge gaps about diphtheria’s epidemiology, transmission, and control.
METHODS
We conducted 9 distinct systematic reviews on PubMed and Scopus (March–May 2018). We pooled and analyzed extracted data to fill in these key knowledge gaps.
RESULTS
We identified 6934 articles, reviewed 781 full texts, and included 266. From this, we estimate that the median incubation period is 1.4 days. On average, untreated cases are colonized for 18.5 days (95% credible interval [CrI], 17.7–19.4 days), and 95% clear Corynebacterium diphtheriae within 48 days (95% CrI, 46–51 days). Asymptomatic carriers cause 76% (95% confidence interval, 59%–87%) fewer cases over the course of infection than symptomatic cases. The basic reproductive number is 1.7–4.3. Receipt of 3 doses of diphtheria toxoid vaccine is 87% (95% CrI, 68%–97%) effective against symptomatic disease and reduces transmission by 60% (95% CrI, 51%–68%). Vaccinated individuals can become colonized and transmit; consequently, vaccination alone can only interrupt transmission in 28% of outbreak settings, making isolation and antibiotics essential. While antibiotics reduce the duration of infection, they must be paired with diphtheria antitoxin to limit morbidity.
CONCLUSIONS
Appropriate tools to confront diphtheria exist; however, accurate understanding of the unique characteristics is crucial and lifesaving treatments must be made widely available. This comprehensive update provides clinical and public health guidance for diphtheria-specific preparedness and response.