BACKGROUND
For decades, poor treatment options and low-quality evidence plagued care for patients with rifampin-resistant tuberculosis. The advent of new drugs to treat tuberculosis and enhanced funding now permit randomized, controlled trials of shortened-duration, all-oral treatments for rifampin-resistant tuberculosis.
METHODS
We conducted a phase 3, multinational, open-label, randomized, controlled noninferiority trial to compare standard therapy for treatment of fluoroquinolone-susceptible, rifampin-resistant tuberculosis with five 9-month oral regimens that included various combinations of bedaquiline (B), delamanid (D), linezolid (L), levofloxacin (Lfx) or moxifloxacin (M), clofazimine (C), and pyrazinamide (Z). Participants were randomly assigned (with the use of Bayesian response-adaptive randomization) to receive one of five combinations or standard therapy. The primary end point was a favorable outcome at week 73, defined by two negative sputum culture results or favorable bacteriologic, clinical, and radiologic evolution. The noninferiority margin was -12 percentage points.
RESULTS
Among the 754 participants who underwent randomization, 699 were included in the modified intention-to-treat analysis, and 562 in the per-protocol analysis. In the modified intention-to-treat analysis, 80.7% of the patients in the standard-therapy group had favorable outcomes. The risk difference between standard therapy and each of the four new regimens that were found to be noninferior in the modified intention-to-treat population was as follows: BCLLfxZ, 9.8 percentage points (95% confidence interval [CI], 0.9 to 18.7); BLMZ, 8.3 percentage points (95% CI, -0.8 to 17.4); BDLLfxZ, 4.6 percentage points (95% CI, -4.9 to 14.1); and DCMZ, 2.5 percentage points (95% CI, -7.5 to 12.5). Differences were similar in the per-protocol population, with the exception of DCMZ, which was not noninferior in that population. The proportion of participants with grade 3 or higher adverse events was similar across the regimens. Grade 3 or higher hepatotoxic events occurred in 11.7% of participants overall and in 7.1% of those receiving standard therapy.
CONCLUSIONS
Consistent results across all the analyses support the noninferior efficacy of three all-oral shortened regimens for the treatment of rifampin-resistant tuberculosis. (Funded by Unitaid and others; endTB ClinicalTrials.gov number, NCT02754765.).
BACKGROUND
The 2022 WHO guidelines on multi-drug/rifampicin resistant tuberculosis (MDR/RR-TB) recommend six months of bedaquiline (Bdq) in the all-oral 9-month shorter regimen and six months or longer for Bdq and delamanid (Dlm) in the 18-20-month longer regimen. However, lack of evidence on extended treatment using Bdq or Dlm has limited their use to six months. We examine the frequency and incidence of QT prolongation based on duration of Bdq and/or Dlm use in longer regimens.
METHODS
We analyzed a prospective cohort of MDR/RR-TB patients from 16 countries who initiated treatment with Bdq and/or Dlm containing regimens from 1 April 2015-30 September 2018. Data were systematically collected using a shared protocol. The outcome of interest was the first clinically relevant prolonged QT interval (grade 3 or above) or a Serious Adverse Event (SAE) involving prolonged QT of any grade.
RESULTS
Among 2,553 patients, 59% received >6 months of Bdq and/or Dlm. Of these, 579 (20.9%) patients experienced a prolonged QT event, the majority (95.5%) being grade 1 or 2. Sixty-four(2.5%) patients experienced the outcome of interest with only 12 (0.5%) having ≥ 1 QT prolonging drugs permanently suspended. The incidence rate of the first prolonged QT event was highest in the first six months of treatment and lower in subsequent six-month periods.
CONCLUSION
We demonstrate that Bdq and/or Dlm use beyond six months is safe in longer MDR/RR-TB regimens with most clinically relevant QT prolongation events occurring in the first six months. ECG monitoring for early identification of QT prolongating events is possible in programmatic conditions.
BACKGROUND
After a history of poor treatments for rifampin-resistant tuberculosis (RR-TB), recent advances have resulted in shorter, more effective treatments. However, they are not available to everyone and have shortcomings, requiring additional treatment options.
METHODS
endTB is an international, open-label, Phase 3 non-inferiority, randomized, controlled clinical trial to compare five 9-month all-oral regimens including bedaquiline (B), delamanid (D), linezolid (L), levofloxacin (Lfx) or moxifloxacin (M), clofazimine (C) and pyrazinamide (Z), to the standard (control) for treatment of fluoroquinolone-susceptible RR-TB. Participants were randomized to 9BLMZ, 9BCLLfxZ, 9BDLLfxZ, 9DCLLfxZ, 9DCMZ and control using Bayesian response-adaptive randomization. The primary outcome was favorable outcome at week 73 defined by two negative sputum culture results or by favorable bacteriologic, clinical and radiologic evolution. The non-inferiority margin was 12 percentage points.
RESULTS
Of 754 randomized patients, 696 and 559 were included in the modified intention to treat (mITT) and per-protocol (PP) analyses, respectively. In mITT, the control had 80.7% favorable outcomes. Regimens 9BCLLfxZ [adjusted risk difference (aRD): 9.5% (95% confidence interval (CI), 0.4 to 18.6)], 9BLMZ [aRD: 8.8% (95%CI, −0.6 to 18.2)], and 9BDLLfxZ [3.9% (95%CI, −5.8 to 13.6)] were non-inferior in mITT and in PP. The proportion of participants experiencing grade 3 or higher adverse events was similar across the regimens. Grade 3 or higher hepatotoxicity occurred in 11.7% of the experimental regimens overall and in 7.1% of the control.
CONCLUSIONS
The endTB trial increases treatment options for RR-TB with three shortened, all-oral regimens that were non-inferior to a current well-performing standard of care.
Bedaquiline (BDQ) was initially only available through compassionate use programmes.
OBJECTIVE
To assess the effectiveness and safety of multidrug-resistant tuberculosis (MDR-TB) treatment containing BDQ.
METHOD
Retrospective analysis of data from patients receiving BDQ through compassionate use in Armenia and Georgia from April 2013 to April 2015. Logistic regression was used to assess the risk factors associated with unsuccessful treatment outcomes.
RESULTS
Of 82 patients included, 84.2% (69/82) had fluoroquinolone-resistant MDR-TB and 43.4% (23/53) were seropositive for the hepatitis C virus (HCV). The culture conversion rate was 84.4% (54/64), and 18.5% (10/54) reverted back to positive. In total, 79.3% (65/82) of the patients reported at least one adverse event. Serious adverse events were reported in 14 patients, with 10/14 patients experiencing fatal outcomes—6/10 related to advanced TB and 2/10 assessed as possibly related to BDQ. Treatment outcomes were as follows: 58.5% treatment success, 12.2% deaths, 7.3% failures and 21.9% lost to follow-up. HCV coinfection was associated with unsuccessful outcomes (adjusted OR 4.45, 95%CI 1.23–16.13).
CONCLUSION
BDQ through compassionate use showed relatively good success rates and safety profiles in a cohort with difficult-to-treat MDR-TB. High rates of reversion may indicate that >24 weeks of BDQ is necessary in some cases. HCV coinfection should be diagnosed and treatment considered in MDR-TB patients.
For the first time in almost 50 years, there are new drugs available for the treatment of tuberculosis (TB), including bedaquiline (BDQ) and delamanid (DLM). The rate of introduction, however, has not kept pace with patient needs. It is estimated that as many as 23% of multidrug-resistant TB (MDR-TB) patients have an indication for receiving BDQ. As this is the first time the MDR-TB community is introducing new medications, it is important to understand how implementation can be developed in a variety of settings.
METHODS
A qualitative assessment of country TB programs in which more than 5% of MDR-TB patients were started on BDQ under program conditions.
RESULTS
National TB programs in Belarus, France, Georgia, South Africa, and Swaziland all started sizeable cohorts of patients on BDQ in 2015. Common factors observed in these programs included experience with compassionate use/expanded access, support from implementing partners, and adequate national or donor-supported budgets. Barriers to introduction included restriction of BDQ to the in-patient setting, lack of access to companion drugs, and the development of systems for pharmacovigilance.
CONCLUSION
The five countries in this paper are examples of the introduction of new therapeutic options for the treatment of TB.