Journal Article > ResearchAbstract Only
AIDS Res Hum Retroviruses. 2016 November 8; Volume 33 (Issue 5); DOI:10.1089/AID.2016.0123
Blaizot S, Kim AA, Zeh C, Riche B, Maman D, et al.
AIDS Res Hum Retroviruses. 2016 November 8; Volume 33 (Issue 5); DOI:10.1089/AID.2016.0123
OBJECTIVES
Estimating HIV incidence is critical for identifying groups at risk for HIV infection, planning and targeting interventions, and evaluating these interventions over time. The use of reliable estimation methods for HIV incidence is thus of high importance. The aim of this study was to compare methods for estimating HIV incidence in a population-based cross-sectional survey.
DESIGN/METHODS
The incidence estimation methods evaluated included assay-derived methods, a testing history-derived method, and a probability-based method applied to data from the Ndhiwa HIV Impact in Population Survey (NHIPS). Incidence rates by sex and age and cumulative incidence as a function of age were presented.
RESULTS
HIV incidence ranged from 1.38 [95% confidence interval (CI) 0.67-2.09] to 3.30 [95% CI 2.78-3.82] per 100 person-years overall; 0.59 [95% CI 0.00-1.34] to 2.89 [95% CI 0.86-6.45] in men; and 1.62 [95% CI 0.16-6.04] to 4.03 [95% CI 3.30-4.77] per 100 person-years in women. Women had higher incidence rates than men for all methods. Incidence rates were highest among women aged 15-24 and 25-34 years and highest among men aged 25-34 years.
CONCLUSION
Comparison of different methods showed variations in incidence estimates, but they were in agreement to identify most-at-risk groups. The use and comparison of several distinct approaches for estimating incidence are important to provide the best-supported estimate of HIV incidence in the population.
Estimating HIV incidence is critical for identifying groups at risk for HIV infection, planning and targeting interventions, and evaluating these interventions over time. The use of reliable estimation methods for HIV incidence is thus of high importance. The aim of this study was to compare methods for estimating HIV incidence in a population-based cross-sectional survey.
DESIGN/METHODS
The incidence estimation methods evaluated included assay-derived methods, a testing history-derived method, and a probability-based method applied to data from the Ndhiwa HIV Impact in Population Survey (NHIPS). Incidence rates by sex and age and cumulative incidence as a function of age were presented.
RESULTS
HIV incidence ranged from 1.38 [95% confidence interval (CI) 0.67-2.09] to 3.30 [95% CI 2.78-3.82] per 100 person-years overall; 0.59 [95% CI 0.00-1.34] to 2.89 [95% CI 0.86-6.45] in men; and 1.62 [95% CI 0.16-6.04] to 4.03 [95% CI 3.30-4.77] per 100 person-years in women. Women had higher incidence rates than men for all methods. Incidence rates were highest among women aged 15-24 and 25-34 years and highest among men aged 25-34 years.
CONCLUSION
Comparison of different methods showed variations in incidence estimates, but they were in agreement to identify most-at-risk groups. The use and comparison of several distinct approaches for estimating incidence are important to provide the best-supported estimate of HIV incidence in the population.
Journal Article > ResearchFull Text
Lancet Infect Dis. 2023 March 1; Volume 23 (Issue 3); 341-351.; DOI:10.1016/S1473-3099(22)00668-5
Marcy O, Wobudeya E, Font H, Vessière A, Chabala C, et al.
Lancet Infect Dis. 2023 March 1; Volume 23 (Issue 3); 341-351.; DOI:10.1016/S1473-3099(22)00668-5
BACKGROUND
Tuberculosis diagnosis might be delayed or missed in children with severe pneumonia because this diagnosis is usually only considered in cases of prolonged symptoms or antibiotic failure. Systematic tuberculosis detection at hospital admission could increase case detection and reduce mortality.
METHODS
We did a stepped-wedge cluster-randomised trial in 16 hospitals from six countries (Cambodia, Cameroon, Côte d'Ivoire, Mozambique, Uganda, and Zambia) with high incidence of tuberculosis. Children younger than 5 years with WHO-defined severe pneumonia received either the standard of care (control group) or standard of care plus Xpert MTB/RIF Ultra (Xpert Ultra; Cepheid, Sunnyvale, CA, USA) on nasopharyngeal aspirate and stool samples (intervention group). Clusters (hospitals) were progressively switched from control to intervention at 5-week intervals, using a computer-generated random sequence, stratified on incidence rate of tuberculosis at country level, and masked to teams until 5 weeks before switch. We assessed the effect of the intervention on primary (12-week all-cause mortality) and secondary (including tuberculosis diagnosis) outcomes, using generalised linear mixed models. The primary analysis was by intention to treat. We described outcomes in children with severe acute malnutrition in a post hoc analysis. This study is registered with ClinicalTrials.gov (NCT03831906) and the Pan African Clinical Trial Registry (PACTR202101615120643).
FINDINGS
From March 21, 2019, to March 30, 2021, we enrolled 1401 children in the control group and 1169 children in the intervention group. In the intervention group, 1140 (97·5%) children had nasopharyngeal aspirates and 942 (80·6%) had their stool collected; 24 (2·1%) had positive Xpert Ultra. At 12 weeks, 110 (7·9%) children in the control group and 91 (7·8%) children in the intervention group had died (adjusted odds ratio [OR] 0·986, 95% CI 0·597-1·630, p=0·957), and 74 (5·3%) children in the control group and 88 (7·5%) children in the intervention group had tuberculosis diagnosed (adjusted OR 1·238, 95% CI 0·696-2·202, p=0·467). In children with severe acute malnutrition, 57 (23·8%) of 240 children in the control group and 53 (17·8%) of 297 children in the intervention group died, and 36 (15·0%) of 240 children in the control group and 56 (18·9%) of 297 children in the intervention group were diagnosed with tuberculosis. The main adverse events associated with nasopharyngeal aspirates were samples with blood in 312 (27·3%) of 1147 children with nasopharyngeal aspirates attempted, dyspnoea or SpO2 less than 95% in 134 (11·4%) of children, and transient respiratory distress or SpO2 less than 90% in 59 (5·2%) children. There was no serious adverse event related to nasopharyngeal aspirates reported during the trial.
INTERPRETATION
Systematic molecular tuberculosis detection at hospital admission did not reduce mortality in children with severe pneumonia. High treatment and microbiological confirmation rates support more systematic use of Xpert Ultra in this group, notably in children with severe acute malnutrition.
Tuberculosis diagnosis might be delayed or missed in children with severe pneumonia because this diagnosis is usually only considered in cases of prolonged symptoms or antibiotic failure. Systematic tuberculosis detection at hospital admission could increase case detection and reduce mortality.
METHODS
We did a stepped-wedge cluster-randomised trial in 16 hospitals from six countries (Cambodia, Cameroon, Côte d'Ivoire, Mozambique, Uganda, and Zambia) with high incidence of tuberculosis. Children younger than 5 years with WHO-defined severe pneumonia received either the standard of care (control group) or standard of care plus Xpert MTB/RIF Ultra (Xpert Ultra; Cepheid, Sunnyvale, CA, USA) on nasopharyngeal aspirate and stool samples (intervention group). Clusters (hospitals) were progressively switched from control to intervention at 5-week intervals, using a computer-generated random sequence, stratified on incidence rate of tuberculosis at country level, and masked to teams until 5 weeks before switch. We assessed the effect of the intervention on primary (12-week all-cause mortality) and secondary (including tuberculosis diagnosis) outcomes, using generalised linear mixed models. The primary analysis was by intention to treat. We described outcomes in children with severe acute malnutrition in a post hoc analysis. This study is registered with ClinicalTrials.gov (NCT03831906) and the Pan African Clinical Trial Registry (PACTR202101615120643).
FINDINGS
From March 21, 2019, to March 30, 2021, we enrolled 1401 children in the control group and 1169 children in the intervention group. In the intervention group, 1140 (97·5%) children had nasopharyngeal aspirates and 942 (80·6%) had their stool collected; 24 (2·1%) had positive Xpert Ultra. At 12 weeks, 110 (7·9%) children in the control group and 91 (7·8%) children in the intervention group had died (adjusted odds ratio [OR] 0·986, 95% CI 0·597-1·630, p=0·957), and 74 (5·3%) children in the control group and 88 (7·5%) children in the intervention group had tuberculosis diagnosed (adjusted OR 1·238, 95% CI 0·696-2·202, p=0·467). In children with severe acute malnutrition, 57 (23·8%) of 240 children in the control group and 53 (17·8%) of 297 children in the intervention group died, and 36 (15·0%) of 240 children in the control group and 56 (18·9%) of 297 children in the intervention group were diagnosed with tuberculosis. The main adverse events associated with nasopharyngeal aspirates were samples with blood in 312 (27·3%) of 1147 children with nasopharyngeal aspirates attempted, dyspnoea or SpO2 less than 95% in 134 (11·4%) of children, and transient respiratory distress or SpO2 less than 90% in 59 (5·2%) children. There was no serious adverse event related to nasopharyngeal aspirates reported during the trial.
INTERPRETATION
Systematic molecular tuberculosis detection at hospital admission did not reduce mortality in children with severe pneumonia. High treatment and microbiological confirmation rates support more systematic use of Xpert Ultra in this group, notably in children with severe acute malnutrition.
Journal Article > CommentaryFull Text
Lancet Infect Dis. 2016 October 20; Volume 17 (Issue 1); e26-e29.; DOI:10.1016/S1473-3099(16)30212-2
Peter T, Ellenberger D, Kim AA, Boeras D, Messele T, et al.
Lancet Infect Dis. 2016 October 20; Volume 17 (Issue 1); e26-e29.; DOI:10.1016/S1473-3099(16)30212-2
Scaling up access to HIV viral load testing for individuals undergoing antiretroviral therapy in low-resource settings is a global health priority, as emphasised by research showing the benefits of suppressed viral load for the individual and the whole population. Historically, large-scale diagnostic test implementation has been slow and incomplete because of service delivery and other challenges. Building on lessons from the past, in this Personal View we propose a new framework to accelerate viral load scale-up and ensure equitable access to this essential test. The framework includes the following steps: (1) ensuring adequate financial investment in scaling up this test; (2) achieving pricing agreements and consolidating procurement to lower prices of the test; (3) strengthening functional tiered laboratory networks and systems to expand access to reliable, high-quality testing across countries; (4) strengthening national leadership, with prioritisation of laboratory services; and (5) demand creation and uptake of test results by clinicians, nurses, and patients, which will be vital in ensuring viral load tests are appropriately used to improve the quality of care. The use of dried blood spots to stabilise and ship samples from clinics to laboratories, and the use of point-of-care diagnostic tests, will also be important for ensuring access, especially in settings with reduced laboratory capacity. For countries that have just started to scale up viral load testing, lessons can be learnt from countries such as Botswana, Brazil, South Africa, and Thailand, which have already established viral load programmes. This framework might be useful for guiding the implementation of viral load with the aim of achieving the new global HIV 90-90-90 goals by 2020.
Journal Article > ResearchFull Text
PLOS One. 2017 February 8; Volume 12 (Issue 2); e0171124.; DOI:10.1371/journal.pone.0171124
Onywera H, Maman D, Inzaule S, Auma E, Were K, et al.
PLOS One. 2017 February 8; Volume 12 (Issue 2); e0171124.; DOI:10.1371/journal.pone.0171124
HIV-1 transmitted drug resistance (TDR) is of increasing public health concern in sub-Saharan Africa with the rollout of antiretroviral (ARV) therapy. Such data are, however, limited in Kenya, where HIV-1 drug resistance testing is not routinely performed. From a population-based household survey conducted between September and November 2012 in rural western Kenya, we retrospectively assessed HIV-1 TDR baseline rates, its determinants, and genetic diversity among drug-naïve persons aged 15-59 years with acute HIV-1 infections (AHI) and recent HIV-1 infections (RHI) as determined by nucleic acid amplification test and both Limiting Antigen and BioRad avidity immunoassays, respectively. HIV-1 pol sequences were scored for drug resistance mutations using Stanford HIVdb and WHO 2009 mutation guidelines. HIV-1 subtyping was computed in MEGA6. Eighty seven (93.5%) of the eligible samples were successfully sequenced. Of these, 8 had at least one TDR mutation, resulting in a TDR prevalence of 9.2% (95% CI 4.7-17.1). No TDR was observed among persons with AHI (n = 7). TDR prevalence was 4.6% (95% CI 1.8-11.2) for nucleoside reverse transcriptase inhibitors (NRTIs), 6.9% (95% CI 3.2-14.2) for non- nucleoside reverse transcriptase inhibitors (NNRTIs), and 1.2% (95% CI 0.2-6.2) for protease inhibitors. Three (3.4% 95% CI 0.8-10.1) persons had dual-class NRTI/NNRTI resistance. Predominant TDR mutations in the reverse transcriptase included K103N/S (4.6%) and M184V (2.3%); only M46I/L (1.1%) occurred in the protease. All the eight persons were predicted to have different grades of resistance to the ARV regimens, ranging from potential low-level to high-level resistance. HIV-1 subtype distribution was heterogeneous: A (57.5%), C (6.9%), D (21.8%), G (2.3%), and circulating recombinant forms (11.5%). Only low CD4 count was associated with TDR (p = 0.0145). Our findings warrant the need for enhanced HIV-1 TDR monitoring in order to inform on population-based therapeutic guidelines and public health interventions.