Conference Material > Abstract
Gotham D, Martin M, Barber M, Kazounis E, Batts C, et al.
MSF Scientific Day International 2024. 2024 May 16; DOI:10.57740/aMphKRQ
INTRODUCTION
Clinical trials are a cornerstone of medical innovation. Nonetheless, little information on the cost of conducting clinical trials is available, especially for clinical trials in the global south. This lack of data and transparency hinders the creation of reliable cost estimates and adequate funding of clinical trials in resource- limited settings. Following the recent adoption of the Médecins Sans Frontières (MSF) Clinical Trial Transparency Policy, we present a detailed cost report for TB-PRACTECAL.
METHODS
TB-PRACTECAL was an open-label, phase 2–3, multicentre randomised trial of all-oral regimens for the treatment of drug- resistant tuberculosis. Trial planning began in 2013 and work on publications continued into 2023. The trial took place in six sites across Belarus, South Africa, and Uzbekistan, and enrolled 552 patients. We analysed accounting data for the TB-PRACTECAL project, comprehensively including different costs, presented into 27 categories, by site, and by year, and at the per-patient level.
RESULTS
Total costs for TB-PRACTECAL were €33.9 million, of which 26% were at central level (costs incurred by the UK clinical trial team including trial planning, management, quality assurance, and analysis of results), while 72% were at the trial site level (across all six sites) and 2% were uncategorisable. At trial sites, the largest cost category was staff (43%), followed by external diagnostic services (11%), medicines (9%), other medical consumables (7%), external non-medical services (6%), and transport and travel (6%). Among medicines, the costliest were bedaquiline (46% of medicine costs), linezolid (16%), imipenem/ cilastatin (10%), and delamanid (9%). The mean cost per patient enrolled was €61,460 across the whole trial (including trial management overhead). When only site-level costs were considered, per-patient costs ranged between €19,998 and €45,942 across the six sites.
CONCLUSION
The costs of TB-PRACTECAL were similar to previously reported estimates for comparable clinical trials. However, TB- PRACTECAL included additional costs that would not typically be incurred in a commercial trial, such as investments in clinical research infrastructure and purchase of investigative medical products. To our knowledge, this is the first time MSF, or any other entity, published and analysed the disaggregated costs of a specific clinical trial. These data could help generate reliable predictions for future clinical trials and support planning and involvement, particularly in low-resource settings. Additionally, this study highlights the role of clinical trial cost disclosure in supporting both practical and policy discussions around the development of a more equitable system of biomedical R&D and fairer medicine pricing. Additionally, we developed a financial reporting template to facilitate future reporting of clinical trial cost by MSF and other entities investing in research.
Clinical trials are a cornerstone of medical innovation. Nonetheless, little information on the cost of conducting clinical trials is available, especially for clinical trials in the global south. This lack of data and transparency hinders the creation of reliable cost estimates and adequate funding of clinical trials in resource- limited settings. Following the recent adoption of the Médecins Sans Frontières (MSF) Clinical Trial Transparency Policy, we present a detailed cost report for TB-PRACTECAL.
METHODS
TB-PRACTECAL was an open-label, phase 2–3, multicentre randomised trial of all-oral regimens for the treatment of drug- resistant tuberculosis. Trial planning began in 2013 and work on publications continued into 2023. The trial took place in six sites across Belarus, South Africa, and Uzbekistan, and enrolled 552 patients. We analysed accounting data for the TB-PRACTECAL project, comprehensively including different costs, presented into 27 categories, by site, and by year, and at the per-patient level.
RESULTS
Total costs for TB-PRACTECAL were €33.9 million, of which 26% were at central level (costs incurred by the UK clinical trial team including trial planning, management, quality assurance, and analysis of results), while 72% were at the trial site level (across all six sites) and 2% were uncategorisable. At trial sites, the largest cost category was staff (43%), followed by external diagnostic services (11%), medicines (9%), other medical consumables (7%), external non-medical services (6%), and transport and travel (6%). Among medicines, the costliest were bedaquiline (46% of medicine costs), linezolid (16%), imipenem/ cilastatin (10%), and delamanid (9%). The mean cost per patient enrolled was €61,460 across the whole trial (including trial management overhead). When only site-level costs were considered, per-patient costs ranged between €19,998 and €45,942 across the six sites.
CONCLUSION
The costs of TB-PRACTECAL were similar to previously reported estimates for comparable clinical trials. However, TB- PRACTECAL included additional costs that would not typically be incurred in a commercial trial, such as investments in clinical research infrastructure and purchase of investigative medical products. To our knowledge, this is the first time MSF, or any other entity, published and analysed the disaggregated costs of a specific clinical trial. These data could help generate reliable predictions for future clinical trials and support planning and involvement, particularly in low-resource settings. Additionally, this study highlights the role of clinical trial cost disclosure in supporting both practical and policy discussions around the development of a more equitable system of biomedical R&D and fairer medicine pricing. Additionally, we developed a financial reporting template to facilitate future reporting of clinical trial cost by MSF and other entities investing in research.
Conference Material > Poster
Barber MJ, Gotham D, Bygrave H, Cepuch C
MSF Scientific Day International 2024. 2024 May 16; DOI:10.57740/icqWaSzfB1
Journal Article > ResearchFull Text
PLOS One. 2021 August 31; Volume 16 (Issue 8); e0256883.; DOI: 10.1371/journal.pone.0256883
Gotham D, McKenna L, Deborggraeve S, Madoori S, Branigan D
PLOS One. 2021 August 31; Volume 16 (Issue 8); e0256883.; DOI: 10.1371/journal.pone.0256883
BACKGROUND
The GeneXpert diagnostic platform from the US based company Cepheid is an automated molecular diagnostic device that performs sample preparation and pathogen detection within a single cartridge-based assay. GeneXpert devices can enable diagnosis at the district level without the need for fully equipped clinical laboratories, are simple to use, and offer rapid results. Due to these characteristics, the platform is now widely used in low- and middle-income countries for diagnosis of diseases such as TB and HIV. Assays for SARS-CoV-2 are also being rolled out. We aimed to quantify public sector investments in the development of the GeneXpert platform and Cepheid's suite of cartridge-based assays.
METHODS
Public funding data were collected from the proprietor company's financial filings, grant databases, review of historical literature concerning key laboratories and researchers, and contacting key public sector entities involved in the technology's development. The value of research and development (R&D) tax credits was estimated based on financial filings.
RESULTS
Total public investments in the development of the GeneXpert technology were estimated to be $252 million, including >$11 million in funding for work in public laboratories leading to the first commercial product, $56 million in grants from the National Institutes of Health, $73 million from other U.S. government departments, $67 million in R&D tax credits, $38 million in funding from non-profit and philanthropic organizations, and $9.6 million in small business 'springboard' grants.
CONCLUSION
The public sector has invested over $250 million in the development of both the underlying technologies and the GeneXpert diagnostic platform and assays, and has made additional investments in rolling out the technology in countries with high burdens of TB. The key role played by the public sector in R&D and roll-out stands in contrast to the lack of public sector ability to secure affordable pricing and maintenance agreements.
The GeneXpert diagnostic platform from the US based company Cepheid is an automated molecular diagnostic device that performs sample preparation and pathogen detection within a single cartridge-based assay. GeneXpert devices can enable diagnosis at the district level without the need for fully equipped clinical laboratories, are simple to use, and offer rapid results. Due to these characteristics, the platform is now widely used in low- and middle-income countries for diagnosis of diseases such as TB and HIV. Assays for SARS-CoV-2 are also being rolled out. We aimed to quantify public sector investments in the development of the GeneXpert platform and Cepheid's suite of cartridge-based assays.
METHODS
Public funding data were collected from the proprietor company's financial filings, grant databases, review of historical literature concerning key laboratories and researchers, and contacting key public sector entities involved in the technology's development. The value of research and development (R&D) tax credits was estimated based on financial filings.
RESULTS
Total public investments in the development of the GeneXpert technology were estimated to be $252 million, including >$11 million in funding for work in public laboratories leading to the first commercial product, $56 million in grants from the National Institutes of Health, $73 million from other U.S. government departments, $67 million in R&D tax credits, $38 million in funding from non-profit and philanthropic organizations, and $9.6 million in small business 'springboard' grants.
CONCLUSION
The public sector has invested over $250 million in the development of both the underlying technologies and the GeneXpert diagnostic platform and assays, and has made additional investments in rolling out the technology in countries with high burdens of TB. The key role played by the public sector in R&D and roll-out stands in contrast to the lack of public sector ability to secure affordable pricing and maintenance agreements.
Journal Article > ResearchFull Text
JAMA Netw Open. 2024 March 27; Volume 7 (Issue 3); e243474.; DOI:10.1001/jamanetworkopen.2024.3474
Barber MJ, Gotham D, Bygrave H, Cepuch C
JAMA Netw Open. 2024 March 27; Volume 7 (Issue 3); e243474.; DOI:10.1001/jamanetworkopen.2024.3474
IMPORTANCE
The burden of diabetes is growing worldwide. The costs associated with diabetes put substantial pressure on patients and health budgets, especially in low- and middle-income countries. The prices of diabetes medicines are a key determinant for access, yet little is known about the association between manufacturing costs and current market prices.
OBJECTIVES
To estimate the cost of manufacturing insulins, sodium-glucose cotransporter 2 inhibitors (SGLT2Is), and glucagonlike peptide 1 agonists (GLP1As), derive sustainable cost-based prices (CBPs), and compare these with current market prices.
DESIGN, SETTING, AND PARTICIPANTS
In this economic evaluation, the cost of manufacturing insulins, SGLT2Is, and GLP1As was modeled. Active pharmaceutical ingredient cost per unit (weighted least-squares regression model using data from a commercial database of trade shipments, data from January 1, 2016, to March 31, 2023) was combined with costs of formulation and other operating expenses, plus a profit margin with an allowance for tax, to estimate CBPs. Cost-based prices were compared with current prices in 13 countries, collected in January 2023 from public databases. Countries were selected to provide representation of different income levels and geographic regions based on the availability of public databases.
MAIN OUTCOMES AND MEASURES
Estimated CBPs; lowest current market prices (2023 US dollars).
RESULTS
In this economic evaluation of manufacturing costs, estimated CBPs for treatment with insulin in a reusable pen device could be as low as $96 (human insulin) or $111 (insulin analogues) per year for a basal-bolus regimen, $61 per year using twice-daily injections of mixed human insulin, and $50 (human insulin) or $72 (insulin analogues) per year for a once-daily basal insulin injection (for type 2 diabetes), including the cost of injection devices and needles. Cost-based prices ranged from $1.30 to $3.45 per month for SGLT2Is (except canagliflozin: $25.00-$46.79) and from $0.75 to $72.49 per month for GLP1As. These CBPs were substantially lower than current prices in the 13 countries surveyed.
CONCLUSIONS AND RELEVANCE
High prices limit access to newer diabetes medicines in many countries. The findings of this study suggest that robust generic and biosimilar competition could reduce prices to more affordable levels and enable expansion of diabetes treatment globally.
The burden of diabetes is growing worldwide. The costs associated with diabetes put substantial pressure on patients and health budgets, especially in low- and middle-income countries. The prices of diabetes medicines are a key determinant for access, yet little is known about the association between manufacturing costs and current market prices.
OBJECTIVES
To estimate the cost of manufacturing insulins, sodium-glucose cotransporter 2 inhibitors (SGLT2Is), and glucagonlike peptide 1 agonists (GLP1As), derive sustainable cost-based prices (CBPs), and compare these with current market prices.
DESIGN, SETTING, AND PARTICIPANTS
In this economic evaluation, the cost of manufacturing insulins, SGLT2Is, and GLP1As was modeled. Active pharmaceutical ingredient cost per unit (weighted least-squares regression model using data from a commercial database of trade shipments, data from January 1, 2016, to March 31, 2023) was combined with costs of formulation and other operating expenses, plus a profit margin with an allowance for tax, to estimate CBPs. Cost-based prices were compared with current prices in 13 countries, collected in January 2023 from public databases. Countries were selected to provide representation of different income levels and geographic regions based on the availability of public databases.
MAIN OUTCOMES AND MEASURES
Estimated CBPs; lowest current market prices (2023 US dollars).
RESULTS
In this economic evaluation of manufacturing costs, estimated CBPs for treatment with insulin in a reusable pen device could be as low as $96 (human insulin) or $111 (insulin analogues) per year for a basal-bolus regimen, $61 per year using twice-daily injections of mixed human insulin, and $50 (human insulin) or $72 (insulin analogues) per year for a once-daily basal insulin injection (for type 2 diabetes), including the cost of injection devices and needles. Cost-based prices ranged from $1.30 to $3.45 per month for SGLT2Is (except canagliflozin: $25.00-$46.79) and from $0.75 to $72.49 per month for GLP1As. These CBPs were substantially lower than current prices in the 13 countries surveyed.
CONCLUSIONS AND RELEVANCE
High prices limit access to newer diabetes medicines in many countries. The findings of this study suggest that robust generic and biosimilar competition could reduce prices to more affordable levels and enable expansion of diabetes treatment globally.
Conference Material > Slide Presentation
Gotham D, Martin M, Barber M, Kazounis E, Batts C, et al.
MSF Scientific Day International 2024. 2024 May 16; DOI:10.57740/asasBXQ