Journal Article > ResearchFull Text
Clin Infect Dis. 27 September 2022; Online ahead of print; ciac643.; DOI:10.1093/cid/ciac643
Musa AM, Mbui J, Mohammed R, Olobo J, Ritmeijer KKD, et al.
Clin Infect Dis. 27 September 2022; Online ahead of print; ciac643.; DOI:10.1093/cid/ciac643
BACKGROUND
This study aimed to determine whether paromomycin plus miltefosine (PM/MF) is noninferior to sodium stibogluconate plus paromomycin (SSG/PM) for treatment of primary visceral leishmaniasis in eastern Africa.
METHODS
An open-label, phase 3, randomized, controlled trial was conducted in adult and pediatric patients at 7 sites in eastern Africa. Patients were randomly assigned to either 20 mg/kg paromomycin plus allometric dose of miltefosine (14 days), or 20 mg/kg sodium stibogluconate plus 15 mg/kg paromomycin (17 days). The primary endpoint was definitive cure after 6 months.
RESULTS
Of 439 randomized patients, 424 completed the trial. Definitive cure at 6 months was 91.2% (155 of 170) and 91.8% (156 of 170) in the PM/MF and SSG/PM arms in primary efficacy modified intention-to-treat analysis (difference, 0.6%; 97.5% confidence interval [CI], -6.2 to 7.4), narrowly missing the noninferiority margin of 7%. In the per-protocol analysis, efficacy was 92% (149 of 162) and 91.7% (155 of 169) in the PM/MF and SSG/PM arms (difference, -0.3%; 97.5% CI, –7.0 to 6.5), demonstrating noninferiority. Treatments were well tolerated. Four of 18 serious adverse events were study drug–related, and 1 death was SSG-related. Allometric dosing ensured similar MF exposure in children (< 12 years) and adults.
CONCLUSIONS
PM/MF and SSG/PM efficacies were similar, and adverse drug reactions were as expected given the drugs safety profiles. With 1 less injection each day, reduced treatment duration, and no risk of SSG-associated life-threatening cardiotoxicity, PM/MF is a more patient-friendly alternative for children and adults with primary visceral leishmaniasis in eastern Africa.
CLINICAL TRIALS REGISTRATION
NCT03129646.
This study aimed to determine whether paromomycin plus miltefosine (PM/MF) is noninferior to sodium stibogluconate plus paromomycin (SSG/PM) for treatment of primary visceral leishmaniasis in eastern Africa.
METHODS
An open-label, phase 3, randomized, controlled trial was conducted in adult and pediatric patients at 7 sites in eastern Africa. Patients were randomly assigned to either 20 mg/kg paromomycin plus allometric dose of miltefosine (14 days), or 20 mg/kg sodium stibogluconate plus 15 mg/kg paromomycin (17 days). The primary endpoint was definitive cure after 6 months.
RESULTS
Of 439 randomized patients, 424 completed the trial. Definitive cure at 6 months was 91.2% (155 of 170) and 91.8% (156 of 170) in the PM/MF and SSG/PM arms in primary efficacy modified intention-to-treat analysis (difference, 0.6%; 97.5% confidence interval [CI], -6.2 to 7.4), narrowly missing the noninferiority margin of 7%. In the per-protocol analysis, efficacy was 92% (149 of 162) and 91.7% (155 of 169) in the PM/MF and SSG/PM arms (difference, -0.3%; 97.5% CI, –7.0 to 6.5), demonstrating noninferiority. Treatments were well tolerated. Four of 18 serious adverse events were study drug–related, and 1 death was SSG-related. Allometric dosing ensured similar MF exposure in children (< 12 years) and adults.
CONCLUSIONS
PM/MF and SSG/PM efficacies were similar, and adverse drug reactions were as expected given the drugs safety profiles. With 1 less injection each day, reduced treatment duration, and no risk of SSG-associated life-threatening cardiotoxicity, PM/MF is a more patient-friendly alternative for children and adults with primary visceral leishmaniasis in eastern Africa.
CLINICAL TRIALS REGISTRATION
NCT03129646.
Journal Article > ResearchFull Text
PLoS Negl Trop Dis. 21 February 2019; DOI:10.1371/journal.pntd.0007132.
Diro EGJ, Edwards T, Ritmeijer KKD, Fikre H, Abongomera C, et al.
PLoS Negl Trop Dis. 21 February 2019; DOI:10.1371/journal.pntd.0007132.
BACKGROUND:
The long-term treatment outcome of visceral leishmaniasis (VL) patients with HIV co-infection is complicated by a high rate of relapse, especially when the CD4 count is low. Although use of secondary prophylaxis is recommended, it is not routinely practiced and data on its effectiveness and safety are limited.
METHODS:
A prospective cohort study was conducted in Northwest Ethiopia from August 2014 to August 2017 (NCT02011958). HIV-VL patients were followed for up to 12 months. Patients with CD4 cell counts below 200/μL at the end of VL treatment received pentamidine prophylaxis starting one month after parasitological cure, while those with CD4 count ≥200 cells/μL were followed without secondary prophylaxis. Compliance, safety and relapse-free survival, using Kaplan-Meier analysis methods to account for variable time at risk, were summarised. Risk factors for relapse or death were analysed.
RESULTS:
Fifty-four HIV patients were followed. The probability of relapse-free survival at one year was 50% (95% confidence interval [CI]: 35-63%): 53% (30-71%) in 22 patients with CD4 ≥200 cells/μL without pentamidine prophylaxis and 46% (26-63%) in 29 with CD4 <200 cells/μL who started pentamidine. Three patients with CD4 <200 cells/μL did not start pentamidine. Amongst those with CD4 ≥200 cells/μL, VL relapse was an independent risk factor for subsequent relapse or death (adjusted rate ratio: 5.42, 95% CI: 1.1-25.8). Except for one case of renal failure which was considered possibly related to pentamidine, there were no drug-related safety concerns.
CONCLUSION:
The relapse-free survival rate for VL patients with HIV was low. Relapse-free survival of patients with CD4 count <200cells/μL given pentamidine secondary prophylaxis appeared to be comparable to patients with a CD4 count ≥200 cells/μL not given prophylaxis. Patients with relapsed VL are at higher risk for subsequent relapse and should be considered a priority for secondary prophylaxis, irrespective of their CD4 count.
The long-term treatment outcome of visceral leishmaniasis (VL) patients with HIV co-infection is complicated by a high rate of relapse, especially when the CD4 count is low. Although use of secondary prophylaxis is recommended, it is not routinely practiced and data on its effectiveness and safety are limited.
METHODS:
A prospective cohort study was conducted in Northwest Ethiopia from August 2014 to August 2017 (NCT02011958). HIV-VL patients were followed for up to 12 months. Patients with CD4 cell counts below 200/μL at the end of VL treatment received pentamidine prophylaxis starting one month after parasitological cure, while those with CD4 count ≥200 cells/μL were followed without secondary prophylaxis. Compliance, safety and relapse-free survival, using Kaplan-Meier analysis methods to account for variable time at risk, were summarised. Risk factors for relapse or death were analysed.
RESULTS:
Fifty-four HIV patients were followed. The probability of relapse-free survival at one year was 50% (95% confidence interval [CI]: 35-63%): 53% (30-71%) in 22 patients with CD4 ≥200 cells/μL without pentamidine prophylaxis and 46% (26-63%) in 29 with CD4 <200 cells/μL who started pentamidine. Three patients with CD4 <200 cells/μL did not start pentamidine. Amongst those with CD4 ≥200 cells/μL, VL relapse was an independent risk factor for subsequent relapse or death (adjusted rate ratio: 5.42, 95% CI: 1.1-25.8). Except for one case of renal failure which was considered possibly related to pentamidine, there were no drug-related safety concerns.
CONCLUSION:
The relapse-free survival rate for VL patients with HIV was low. Relapse-free survival of patients with CD4 count <200cells/μL given pentamidine secondary prophylaxis appeared to be comparable to patients with a CD4 count ≥200 cells/μL not given prophylaxis. Patients with relapsed VL are at higher risk for subsequent relapse and should be considered a priority for secondary prophylaxis, irrespective of their CD4 count.
Journal Article > ResearchFull Text
PLoS Negl Trop Dis. 17 January 2019; Volume 13 (Issue 1); DOI:10.1371/journal.pntd.0006988
Diro EGJ, Blesson S, Edwards T, Koert R, Ritmeijer KKD, et al.
PLoS Negl Trop Dis. 17 January 2019; Volume 13 (Issue 1); DOI:10.1371/journal.pntd.0006988
BACKGROUND
Visceral leishmaniasis (VL) in human immunodeficiency virus (HIV) co-infected patients requires special case management. AmBisome monotherapy at 40 mg/kg is recommended by the World Health Organization. The objective of the study was to assess if a combination of a lower dose of AmBisome with miltefosine would show acceptable efficacy at the end of treatment.
METHODOLOGY/PRINCIPAL FINDINGS
An open-label, non-comparative randomized trial of AmBisome (30 mg/kg) with miltefosine (100 mg/day for 28 days), and AmBisome monotherapy (40 mg/kg) was conducted in Ethiopian VL patients co-infected with HIV (NCT02011958). A sequential design was used with a triangular continuation region. The primary outcome was parasite clearance at day 29, after the first round of treatment. Patients with clinical improvement but without parasite clearance at day 29 received a second round of the allocated treatment. Efficacy was evaluated again at day 58, after completion of treatment.
Recruitment was stopped after inclusion of 19 and 39 patients in monotherapy and combination arms respectively, as per pre-specified stopping rules. At D29, intention-to-treat efficacy in the AmBisome arm was 70% (95% CI 45–87%) in the unadjusted analysis, and 50% (95% CI 27–73%) in the adjusted analysis, while in the combination arm, it was 81% (95% CI 67–90%) and 67% (95% CI 48–82%) respectively. At D58, the adjusted efficacy was 55% (95% CI 32–78%) in the monotherapy arm, and 88% (95% CI 79–98%) in the combination arm.
No major safety concerns related to the study medication were identified. Ten SAEs were observed within the treatment period, and 4 deaths unrelated to the study medication.
CONCLUSIONS/SIGNIFICANCE
The extended treatment strategy with the combination regimen showed the highest documented efficacy in HIV-VL patients; these results support a recommendation of this regimen as first-line treatment strategy for HIV-VL patients in eastern Africa.
TRIAL REGISTRATION NUMBER
www.clinicaltrials.gov NCT02011958
Visceral leishmaniasis (VL) in human immunodeficiency virus (HIV) co-infected patients requires special case management. AmBisome monotherapy at 40 mg/kg is recommended by the World Health Organization. The objective of the study was to assess if a combination of a lower dose of AmBisome with miltefosine would show acceptable efficacy at the end of treatment.
METHODOLOGY/PRINCIPAL FINDINGS
An open-label, non-comparative randomized trial of AmBisome (30 mg/kg) with miltefosine (100 mg/day for 28 days), and AmBisome monotherapy (40 mg/kg) was conducted in Ethiopian VL patients co-infected with HIV (NCT02011958). A sequential design was used with a triangular continuation region. The primary outcome was parasite clearance at day 29, after the first round of treatment. Patients with clinical improvement but without parasite clearance at day 29 received a second round of the allocated treatment. Efficacy was evaluated again at day 58, after completion of treatment.
Recruitment was stopped after inclusion of 19 and 39 patients in monotherapy and combination arms respectively, as per pre-specified stopping rules. At D29, intention-to-treat efficacy in the AmBisome arm was 70% (95% CI 45–87%) in the unadjusted analysis, and 50% (95% CI 27–73%) in the adjusted analysis, while in the combination arm, it was 81% (95% CI 67–90%) and 67% (95% CI 48–82%) respectively. At D58, the adjusted efficacy was 55% (95% CI 32–78%) in the monotherapy arm, and 88% (95% CI 79–98%) in the combination arm.
No major safety concerns related to the study medication were identified. Ten SAEs were observed within the treatment period, and 4 deaths unrelated to the study medication.
CONCLUSIONS/SIGNIFICANCE
The extended treatment strategy with the combination regimen showed the highest documented efficacy in HIV-VL patients; these results support a recommendation of this regimen as first-line treatment strategy for HIV-VL patients in eastern Africa.
TRIAL REGISTRATION NUMBER
www.clinicaltrials.gov NCT02011958
Journal Article > ResearchFull Text
Front Cell Infect Microbiol. 29 March 2018; Volume 8; 94.; DOI:10.3389/fcimb.2018.00094
van Griensven J, Mangesha B, Mekonnen T, Fikre H, Takele Y, et al.
Front Cell Infect Microbiol. 29 March 2018; Volume 8; 94.; DOI:10.3389/fcimb.2018.00094
BACKGROUND
Biomarkers predicting the risk of VL treatment failure and relapse in VL/HIV coinfected patients are needed. Nested within a two-site clinical trial in Ethiopia (2011-2015), we conducted an exploratory study to assess whether (1) levels of Leishmania antigenuria measured at VL diagnosis were associated with initial treatment failure and (2) levels of Leishmania antigenuria at the end of treatment (parasitologically-confirmed cure) were associated with subsequent relapse.
METHODS
Leishmania antigenuria at VL diagnosis and cure was determined using KAtex urine antigen test and graded as negative (0), weak/moderate (grade 1+/2+) or strongly-positive (3+). Logistic regression and Kaplan-Meier methods were used to assess the association between antigenuria and (1) initial treatment failure, and (2) relapse over the 12 months after cure, respectively.
RESULTS
The analysis to predict initial treatment failure included sixty-three coinfected adults [median age: 30 years interquartile range (IQR) 27-35], median CD4 count: 56 cells/µL (IQR 38-113). KAtex results at VL diagnosis were negative in 11 (17%), weak/moderate in 17 (27%) and strongly-positive in 35 (36%). Twenty (32%) patients had parasitologically-confirmed treatment failure, with a risk of failure of 9% (1/11) with KAtex-negative results, 0% (0/17) for KAtex 1+/2+ and 54% (19/35) for KAtex 3+ results. Compared to KAtex-negative patients, KAtex 3+ patients were at increased risk of treatment failure [odds ratio 11.9 (95% CI 1.4-103.0); P: 0.025]. Forty-four patients were included in the analysis to predict relapse [median age: 31 years (IQR 28-35), median CD4 count: 116 cells/µL (IQR 95-181)]. When achieving VL cure, KAtex results were negative in 19 (43%), weak/moderate (1+/2+) in 10 (23%), and strongly positive (3+) in 15 patients (34%). Over the subsequent 12 months, eight out of 44 patients (18%) relapsed. The predicted 1-year relapse risk was 6% for KAtex-negative results, 14% for KAtex 1+/2+ and 42% for KAtex 3+ results [hazard ratio of 2.2 (95% CI 0.1-34.9) for KAtex 1+/2+ and 9.8 (95% CI 1.8-82.1) for KAtex 3+, compared to KAtex negative patients; P: 0.03].
CONCLUSION
A simple field-deployable Leishmania urine antigen test can be used for risk stratification of initial treatment failure and VL relapse in HIV-patients. A dipstick-format would facilitate field implementation.
Biomarkers predicting the risk of VL treatment failure and relapse in VL/HIV coinfected patients are needed. Nested within a two-site clinical trial in Ethiopia (2011-2015), we conducted an exploratory study to assess whether (1) levels of Leishmania antigenuria measured at VL diagnosis were associated with initial treatment failure and (2) levels of Leishmania antigenuria at the end of treatment (parasitologically-confirmed cure) were associated with subsequent relapse.
METHODS
Leishmania antigenuria at VL diagnosis and cure was determined using KAtex urine antigen test and graded as negative (0), weak/moderate (grade 1+/2+) or strongly-positive (3+). Logistic regression and Kaplan-Meier methods were used to assess the association between antigenuria and (1) initial treatment failure, and (2) relapse over the 12 months after cure, respectively.
RESULTS
The analysis to predict initial treatment failure included sixty-three coinfected adults [median age: 30 years interquartile range (IQR) 27-35], median CD4 count: 56 cells/µL (IQR 38-113). KAtex results at VL diagnosis were negative in 11 (17%), weak/moderate in 17 (27%) and strongly-positive in 35 (36%). Twenty (32%) patients had parasitologically-confirmed treatment failure, with a risk of failure of 9% (1/11) with KAtex-negative results, 0% (0/17) for KAtex 1+/2+ and 54% (19/35) for KAtex 3+ results. Compared to KAtex-negative patients, KAtex 3+ patients were at increased risk of treatment failure [odds ratio 11.9 (95% CI 1.4-103.0); P: 0.025]. Forty-four patients were included in the analysis to predict relapse [median age: 31 years (IQR 28-35), median CD4 count: 116 cells/µL (IQR 95-181)]. When achieving VL cure, KAtex results were negative in 19 (43%), weak/moderate (1+/2+) in 10 (23%), and strongly positive (3+) in 15 patients (34%). Over the subsequent 12 months, eight out of 44 patients (18%) relapsed. The predicted 1-year relapse risk was 6% for KAtex-negative results, 14% for KAtex 1+/2+ and 42% for KAtex 3+ results [hazard ratio of 2.2 (95% CI 0.1-34.9) for KAtex 1+/2+ and 9.8 (95% CI 1.8-82.1) for KAtex 3+, compared to KAtex negative patients; P: 0.03].
CONCLUSION
A simple field-deployable Leishmania urine antigen test can be used for risk stratification of initial treatment failure and VL relapse in HIV-patients. A dipstick-format would facilitate field implementation.
Journal Article > ResearchFull Text
Clin Infect Dis. 13 September 2017; Volume 66 (Issue 3); DOI:10.1093/cid/cix807
Diro EGJ, Ritmeijer KKD, Boelaert M, Alves F, Mohammed R, et al.
Clin Infect Dis. 13 September 2017; Volume 66 (Issue 3); DOI:10.1093/cid/cix807
We have conducted a single-arm trial evaluating monthly pentamidine secondary prophylaxis (PSP) to prevent visceral leishmaniasis (VL) relapse in Ethiopian HIV-patients. Outcomes at 12 months of PSP have been previously reported, supporting PSP effectiveness and safety. However, remaining relapse-free after PSP discontinuation is vital. We now report outcomes and associated factors for a period of upto 2.5 years after initiating PSP, including one year follow-up after PSP discontinuation.