Journal Article > ResearchFull Text
BMC Health Serv Res. 2024 June 3; Volume 24 (Issue 1); 699.; DOI:10.1186/s12913-024-11151-4
Kerschberger B, Daka M, Shongwe B, Dlamini T, Ngwenya S, et al.
BMC Health Serv Res. 2024 June 3; Volume 24 (Issue 1); 699.; DOI:10.1186/s12913-024-11151-4
BACKGROUND
Video-enabled directly observed therapy (video-DOT) has been proposed as an additional option for treatment provision besides in-person DOT for patients with drug-resistant TB (DRTB) disease. However, evidence and implementation experience mainly originate from well-resourced contexts. This study describes the operationalization of video-DOT in a low-resourced setting in Eswatini facing a high burden of HIV and TB amid the emergence of the COVID-19 pandemic.
METHODS
This is a retrospectively established cohort of patients receiving DRTB treatment during the implementation of video-DOT in Shiselweni from May 2020 to March 2022. We described intervention uptake (vs. in-person DOT) and assessed unfavorable DRTB treatment outcome (death, loss to care) using Kaplan-Meier statistics and multivariable Cox-regression models. Video-related statistics were described with frequencies and medians. We calculated the fraction of expected doses observed (FEDO) under video-DOT and assessed associations with missed video uploads using multivariable Poisson regression analysis.
RESULTS
Of 71 DRTB patients eligible for video-DOT, the median age was 39 (IQR 30–54) years, 31.0% (n = 22) were women, 67.1% (n = 47/70) were HIV-positive, and 42.3% (n = 30) were already receiving DRTB treatment when video-DOT became available. About half of the patients (n = 37; 52.1%) chose video-DOT, mostly during the time when COVID-19 appeared in Eswatini. Video-DOT initiations were lower in new DRTB patients (aHR 0.24, 95% CI 0.12–0.48) and those aged ≥ 60 years (aHR 0.27, 95% CI 0.08–0.89). Overall, 20,634 videos were uploaded with a median number of 553 (IQR 309–748) videos per patient and a median FEDO of 92% (IQR 84–97%). Patients aged ≥ 60 years were less likely to miss video uploads (aIRR 0.07, 95% CI 0.01–0.51). The cumulative Kaplan-Meier estimate of an unfavorable treatment outcome among all patients was 0.08 (95% CI 0.03–0.19), with no differences detected by DOT approach and other baseline factors in multivariable analysis.
CONCLUSIONS
Implementing video-DOT for monitoring of DRTB care provision amid the intersection of the HIV and COVID-19 pandemics seemed feasible. Digital health technologies provide additional options for patients to choose their preferred way to support treatment taking, thus possibly increasing patient-centered health care while sustaining favorable treatment outcomes.
Video-enabled directly observed therapy (video-DOT) has been proposed as an additional option for treatment provision besides in-person DOT for patients with drug-resistant TB (DRTB) disease. However, evidence and implementation experience mainly originate from well-resourced contexts. This study describes the operationalization of video-DOT in a low-resourced setting in Eswatini facing a high burden of HIV and TB amid the emergence of the COVID-19 pandemic.
METHODS
This is a retrospectively established cohort of patients receiving DRTB treatment during the implementation of video-DOT in Shiselweni from May 2020 to March 2022. We described intervention uptake (vs. in-person DOT) and assessed unfavorable DRTB treatment outcome (death, loss to care) using Kaplan-Meier statistics and multivariable Cox-regression models. Video-related statistics were described with frequencies and medians. We calculated the fraction of expected doses observed (FEDO) under video-DOT and assessed associations with missed video uploads using multivariable Poisson regression analysis.
RESULTS
Of 71 DRTB patients eligible for video-DOT, the median age was 39 (IQR 30–54) years, 31.0% (n = 22) were women, 67.1% (n = 47/70) were HIV-positive, and 42.3% (n = 30) were already receiving DRTB treatment when video-DOT became available. About half of the patients (n = 37; 52.1%) chose video-DOT, mostly during the time when COVID-19 appeared in Eswatini. Video-DOT initiations were lower in new DRTB patients (aHR 0.24, 95% CI 0.12–0.48) and those aged ≥ 60 years (aHR 0.27, 95% CI 0.08–0.89). Overall, 20,634 videos were uploaded with a median number of 553 (IQR 309–748) videos per patient and a median FEDO of 92% (IQR 84–97%). Patients aged ≥ 60 years were less likely to miss video uploads (aIRR 0.07, 95% CI 0.01–0.51). The cumulative Kaplan-Meier estimate of an unfavorable treatment outcome among all patients was 0.08 (95% CI 0.03–0.19), with no differences detected by DOT approach and other baseline factors in multivariable analysis.
CONCLUSIONS
Implementing video-DOT for monitoring of DRTB care provision amid the intersection of the HIV and COVID-19 pandemics seemed feasible. Digital health technologies provide additional options for patients to choose their preferred way to support treatment taking, thus possibly increasing patient-centered health care while sustaining favorable treatment outcomes.
Conference Material > Abstract
Sterk E, Schramm B, Riccio E, Gabut M, Fontana L, et al.
MSF Scientific Day International 2024. 2024 May 16; DOI:10.57740/Dz2BnS7
INTRODUCTION
The 2014 West Africa Ebola outbreak underlined inadequacies of current personal protective equipment (PPE), such as being uncomfortable and hot, causing excessive sweating and rapid exhaustion, and limiting interactions between health workers and patients. The smartPPE development project responded to the urgent need for a more comfortable, simpler, and sustainable PPE solution for filovirus-outbreak front-line workers. A one- piece, reusable smartPPE with ventilation system was developed to address these challenges. We assessed ease-of-use, comfort, functionality, and perceived doffing-safety of the smartPPE prototype compared with currently used PPE (current-PPE) under simulated field conditions.
METHODS
In June 2023, we conducted a mixed-methods crossover usability study in a controlled high-heat/high-humidity indoor site in Brindisi, Italy. Ten test users (three female, seven with filovirus-front-line experience) assessed smartPPE and current- PPE in four guided sessions covering donning, (emergency) doffing, clinical tasks, and heavy physical WATSAN activities. User feedback was collected through structured questionnaires. Temperature, humidity, session duration, and vital signs were measured, and perceived exertion was assessed using Borg- scores (scale 6–20).
RESULTS
Median temperature and humidity were higher inside current- PPE than inside smartPPE (difference: 2.3°C [IQR 1.8–3.0] and 12.6 percentage points [8.8–19.6], respectively). Users endured heavy work sessions for significantly longer in smartPPE than in current-PPE (80.0 min [IQR 75–84] vs 49.5 min [45–56]). Median increases in body temperature (1.1°C [IQR 0.7–1.6] vs 0.7°C [0.3–0.9]; p<0.001) and respiratory rate (3.5 rpm [1–5] vs 1.5 rpm [0–3]; p=0.034), and reductions in O2 saturation (–2% [–5 to –1] vs –1.5% [–3 to 0]; p=0.027) were higher with current-PPE than with smartPPE. Peripheral vision was similarly rated, but hearing was compromised with smartPPE at ≥5 m. Median exertion- scores were lower for smartPPE (clinical tasks 8.5 [IQR 7–11] vs 15.5 [14–16] p<0.01; heavy physical activities 14 [13–17] vs 18 [17–20] p=0.035). All users preferred smartPPE for overall and thermal comfort, breathing, and doffing-safety; nine (90%) favoured it for non-verbal communication, eight (80%) for vision or longer-interval heavy WATSAN activities, six (60%) for longer- interval patient care, six (60%) for short-term clinical activities, and six (60%) for emergency doffing. Reported concerns were airflow obstruction while bending, hearing difficulties attributed to ventilation noise, and adjustments for headgear, ventilation, and suit fitting.
CONCLUSION
Test users confirmed the usability of smartPPE and favoured it, especially for doffing-safety, longer-interval clinical or physical work, and improved non-verbal interactions, whereas hearing was challenged by the ventilation. Adjustments are currently underway before design freeze. Stakeholder commitment will be crucial to ensure production at scale.
The 2014 West Africa Ebola outbreak underlined inadequacies of current personal protective equipment (PPE), such as being uncomfortable and hot, causing excessive sweating and rapid exhaustion, and limiting interactions between health workers and patients. The smartPPE development project responded to the urgent need for a more comfortable, simpler, and sustainable PPE solution for filovirus-outbreak front-line workers. A one- piece, reusable smartPPE with ventilation system was developed to address these challenges. We assessed ease-of-use, comfort, functionality, and perceived doffing-safety of the smartPPE prototype compared with currently used PPE (current-PPE) under simulated field conditions.
METHODS
In June 2023, we conducted a mixed-methods crossover usability study in a controlled high-heat/high-humidity indoor site in Brindisi, Italy. Ten test users (three female, seven with filovirus-front-line experience) assessed smartPPE and current- PPE in four guided sessions covering donning, (emergency) doffing, clinical tasks, and heavy physical WATSAN activities. User feedback was collected through structured questionnaires. Temperature, humidity, session duration, and vital signs were measured, and perceived exertion was assessed using Borg- scores (scale 6–20).
RESULTS
Median temperature and humidity were higher inside current- PPE than inside smartPPE (difference: 2.3°C [IQR 1.8–3.0] and 12.6 percentage points [8.8–19.6], respectively). Users endured heavy work sessions for significantly longer in smartPPE than in current-PPE (80.0 min [IQR 75–84] vs 49.5 min [45–56]). Median increases in body temperature (1.1°C [IQR 0.7–1.6] vs 0.7°C [0.3–0.9]; p<0.001) and respiratory rate (3.5 rpm [1–5] vs 1.5 rpm [0–3]; p=0.034), and reductions in O2 saturation (–2% [–5 to –1] vs –1.5% [–3 to 0]; p=0.027) were higher with current-PPE than with smartPPE. Peripheral vision was similarly rated, but hearing was compromised with smartPPE at ≥5 m. Median exertion- scores were lower for smartPPE (clinical tasks 8.5 [IQR 7–11] vs 15.5 [14–16] p<0.01; heavy physical activities 14 [13–17] vs 18 [17–20] p=0.035). All users preferred smartPPE for overall and thermal comfort, breathing, and doffing-safety; nine (90%) favoured it for non-verbal communication, eight (80%) for vision or longer-interval heavy WATSAN activities, six (60%) for longer- interval patient care, six (60%) for short-term clinical activities, and six (60%) for emergency doffing. Reported concerns were airflow obstruction while bending, hearing difficulties attributed to ventilation noise, and adjustments for headgear, ventilation, and suit fitting.
CONCLUSION
Test users confirmed the usability of smartPPE and favoured it, especially for doffing-safety, longer-interval clinical or physical work, and improved non-verbal interactions, whereas hearing was challenged by the ventilation. Adjustments are currently underway before design freeze. Stakeholder commitment will be crucial to ensure production at scale.
Journal Article > Meta-AnalysisFull Text
Pediatr Radiol. 2017 October 1; Volume 47 (Issue 11); DOI:10.1007/s00247-017-3944-4
Andronikou S, Lambert E, Halton J, Hilder L, Crumley I, et al.
Pediatr Radiol. 2017 October 1; Volume 47 (Issue 11); DOI:10.1007/s00247-017-3944-4
Other > Pre-Print
BMC Health Serv Res. 2023 August 9; DOI:10.21203/rs.3.rs-3135109/v1
Kerschberger B, Daka M, Shongwe B, Dlamini T, Ngwenya SM, et al.
BMC Health Serv Res. 2023 August 9; DOI:10.21203/rs.3.rs-3135109/v1
BACKGROUND
Video-enabled directly observed therapy (video-DOT) has been proposed as an additional option for treatment provision besides in-person DOT for patients with drug-resistant TB (DRTB) disease. However, evidence and implementation experience mainly originate from well-resourced contexts. This study describes the operationalization of video-DOT in a low-resourced setting in Eswatini facing a high burden of HIV and TB amid the emergence of the COVID-19 pandemic.
METHODS
This is a retrospectively established cohort of patients receiving DRTB treatment during the implementation of video-DOT in Shiselweni from May 2020 to March 2022. We described intervention uptake (vs in-person DOT) and assessed unfavorable DRTB treatment outcome (death, loss to care) using Kaplan-Meier statistics and multivariable Cox-regression models. Video-related statistics were described with frequencies and medians. We calculated the fraction of expected doses observed (FEDO) under video-DOT and assessed associations with missed video uploads using multivariable Poisson regression analysis.
RESULTS
Of 71 DRTB patients eligible for video-DOT, the median age was 39 (IQR 30–54) years, 31.0% (n=22) were women, 67.1% (n=47/70) were HIV-positive, and 42.3% (n=30) were already receiving DRTB treatment when video-DOT became available. About half of the patients (n=37; 52.1%) chose video-DOT, mostly during the time when COVID-19 appeared in Eswatini. Video-DOT initiations were lower in new DRTB patients (aHR 0.24, 95% CI 0.12–0.48) and those aged =60 years (aHR 0.27, 95% CI 0.08–0.89). Overall, 20,634 videos were uploaded with a median number of 553 (IQR 309–748) videos per patient and a median FEDO of 92% (IQR 84–97%). Patients aged =60 years were less likely to miss video uploads (aIRR 0.07, 95% CI 0.01–0.51). The cumulative Kaplan-Meier estimate of an unfavorable treatment outcome among all patients was 0.08 (95% CI 0.03–0.19), with no differences detected by DOT approach and other baseline factors in multivariable analysis.
CONCLUSIONS
Implementing video-DOT for monitoring of DRTB care provision amid the intersection of the HIV and COVID-19 pandemics seemed feasible. Digital health technologies provide additional options for patients to choose their preferred way to support treatment taking, thus possibly increasing patient-centered health care while sustaining favorable treatment outcomes.
Video-enabled directly observed therapy (video-DOT) has been proposed as an additional option for treatment provision besides in-person DOT for patients with drug-resistant TB (DRTB) disease. However, evidence and implementation experience mainly originate from well-resourced contexts. This study describes the operationalization of video-DOT in a low-resourced setting in Eswatini facing a high burden of HIV and TB amid the emergence of the COVID-19 pandemic.
METHODS
This is a retrospectively established cohort of patients receiving DRTB treatment during the implementation of video-DOT in Shiselweni from May 2020 to March 2022. We described intervention uptake (vs in-person DOT) and assessed unfavorable DRTB treatment outcome (death, loss to care) using Kaplan-Meier statistics and multivariable Cox-regression models. Video-related statistics were described with frequencies and medians. We calculated the fraction of expected doses observed (FEDO) under video-DOT and assessed associations with missed video uploads using multivariable Poisson regression analysis.
RESULTS
Of 71 DRTB patients eligible for video-DOT, the median age was 39 (IQR 30–54) years, 31.0% (n=22) were women, 67.1% (n=47/70) were HIV-positive, and 42.3% (n=30) were already receiving DRTB treatment when video-DOT became available. About half of the patients (n=37; 52.1%) chose video-DOT, mostly during the time when COVID-19 appeared in Eswatini. Video-DOT initiations were lower in new DRTB patients (aHR 0.24, 95% CI 0.12–0.48) and those aged =60 years (aHR 0.27, 95% CI 0.08–0.89). Overall, 20,634 videos were uploaded with a median number of 553 (IQR 309–748) videos per patient and a median FEDO of 92% (IQR 84–97%). Patients aged =60 years were less likely to miss video uploads (aIRR 0.07, 95% CI 0.01–0.51). The cumulative Kaplan-Meier estimate of an unfavorable treatment outcome among all patients was 0.08 (95% CI 0.03–0.19), with no differences detected by DOT approach and other baseline factors in multivariable analysis.
CONCLUSIONS
Implementing video-DOT for monitoring of DRTB care provision amid the intersection of the HIV and COVID-19 pandemics seemed feasible. Digital health technologies provide additional options for patients to choose their preferred way to support treatment taking, thus possibly increasing patient-centered health care while sustaining favorable treatment outcomes.
Conference Material > Slide Presentation
Sterk E, Schramm B, Riccio E, Gabut M, Fontana L, et al.
MSF Scientific Day International 2024. 2024 May 16; DOI:10.57740/9RSrgB
Journal Article > ResearchFull Text
PLOS One. 2020 January 15; Volume 15 (Issue 1); DOI:10.1371/journal.pone.0227773
Crumley I, Halton J, Greig J, Kahunga L, Mwanga JP, et al.
PLOS One. 2020 January 15; Volume 15 (Issue 1); DOI:10.1371/journal.pone.0227773
Introduction: High quality diagnostic imaging can provide increased diagnostic accuracy and help guide medical decision-making and management, however challenges for radiology in resource-limited settings are numerous. Diagnostic imaging and teleradiology have financial and logistical implications, so evidence of impact is crucial. We sought to test the hypothesis that the implementation of computed radiography with teleradiology consultation support will significantly change diagnoses and treatment plans in a resource limited setting.
Method: Paired before-after study to determine the therapeutic impact of an add-on diagnostic test. 'Preliminary Plan' and 'Final Plan' forms allowed direct comparison of diagnosis and treatment plans at initial consultation and following radiography and teleradiology. Consecutive consenting patients were included until the sample size (600) was reached. Changes in both diagnosis and treatment plan were analysed in the whole cohort, with sub-analyses of children aged <5 years, and cases of chest radiography.
Results: Final analysis included 536 cases. Diagnosis changed following radiography and teleradiology in 62% of cases, and treatment plans changed in 61%. In chest radiography cases, 70% of diagnoses and 62% of treatment plans changed, while in children <5 years 66% of diagnoses and 58% of treatment plans changed. Reduced final treatment plans were most common for exploratory surgery (72% decrease), surgical orthopaedic intervention (62% decrease), and TB treatment (52% decrease), allowing more conservative medical or surgical management in 61 cases. Increased final treatment plans were highest in the orthopaedic and interventional surgery and referral categories. Of 42 cases requiring interventional surgery in the final plan, 26 (62%) were identified only after radiography and teleradiology. 16 additional cases were indicated for orthopaedic surgery, 10 cases required patient transfer, and TB treatment was indicated in 45 cases. A change in the original prescription plan occurred in 41% of 536 cases, with one or more prescriptions stopped in 28% of all cases.
Conclusion: We found that computed radiography with teleradiology had significant clinical value in this resource-limited setting, with the potential to affect both patient outcomes and treatment costs through providing improved diagnostics and avoiding unnecessary treatments and medications.
Method: Paired before-after study to determine the therapeutic impact of an add-on diagnostic test. 'Preliminary Plan' and 'Final Plan' forms allowed direct comparison of diagnosis and treatment plans at initial consultation and following radiography and teleradiology. Consecutive consenting patients were included until the sample size (600) was reached. Changes in both diagnosis and treatment plan were analysed in the whole cohort, with sub-analyses of children aged <5 years, and cases of chest radiography.
Results: Final analysis included 536 cases. Diagnosis changed following radiography and teleradiology in 62% of cases, and treatment plans changed in 61%. In chest radiography cases, 70% of diagnoses and 62% of treatment plans changed, while in children <5 years 66% of diagnoses and 58% of treatment plans changed. Reduced final treatment plans were most common for exploratory surgery (72% decrease), surgical orthopaedic intervention (62% decrease), and TB treatment (52% decrease), allowing more conservative medical or surgical management in 61 cases. Increased final treatment plans were highest in the orthopaedic and interventional surgery and referral categories. Of 42 cases requiring interventional surgery in the final plan, 26 (62%) were identified only after radiography and teleradiology. 16 additional cases were indicated for orthopaedic surgery, 10 cases required patient transfer, and TB treatment was indicated in 45 cases. A change in the original prescription plan occurred in 41% of 536 cases, with one or more prescriptions stopped in 28% of all cases.
Conclusion: We found that computed radiography with teleradiology had significant clinical value in this resource-limited setting, with the potential to affect both patient outcomes and treatment costs through providing improved diagnostics and avoiding unnecessary treatments and medications.