Journal Article > ReviewFull Text
Int J Antimicrob Agents. 2017 July 10; Volume 50 (Issue 5); 629-639.; DOI:10.1016/j.ijantimicag.2017.07.002
Bernabe KJ, Langendorf C, Ford NP, Ronat JB
Int J Antimicrob Agents. 2017 July 10; Volume 50 (Issue 5); 629-639.; DOI:10.1016/j.ijantimicag.2017.07.002
Growing data suggest that antimicrobial-resistant bacterial infections are common in low- and middle-income countries. This review summarises the microbiology of key bacterial syndromes encountered in West Africa and estimates the prevalence of antimicrobial resistance (AMR) that could compromise first-line empirical treatment. We systematically searched for studies reporting on the epidemiology of bacterial infection and prevalence of AMR in West Africa within key clinical syndromes. Within each syndrome, the pooled proportion and 95% confidence interval were calculated for each pathogen-antibiotic pair using random-effects models. Among 281 full-text articles reviewed, 120 met the eligibility criteria. The majority of studies originated from Nigeria (70; 58.3%), Ghana (15; 12.5%) and Senegal (15; 12.5%). Overall, 43 studies (35.8%) focused on urinary tract infections (UTI), 38 (31.7%) on bloodstream infections (BSI), 27 (22.5%) on meningitis, 7 (5.8%) on diarrhoea and 5 (4.2%) on pneumonia. Children comprised the majority of subjects. Studies of UTI reported moderate to high rates of AMR to commonly used antibiotics including evidence of the emergence of cephalosporin resistance. We found moderate rates of AMR among common bloodstream pathogens to typical first-line antibiotics including ampicillin, cotrimoxazole, gentamicin and amoxicillin/clavulanate. Among S. pneumoniae strains isolated in patients with meningitis, levels of penicillin resistance were low to moderate with no significant resistance noted to ceftriaxone or cefotaxime. AMR was common in this region, particularly in hospitalized patients with BSI and both outpatient and hospitalized patients with UTI. This raises concern given the limited diagnostic capability and second-line treatment options in the public sector in West Africa.
Journal Article > ResearchFull Text
Epidemiol Infect. 2016 August 11; Volume 144 (Issue 16); 3520-3526.; DOI:10.1017/S0950268816001758
Murphy RA, Okoli O, Essien I, Teicher CL, Elder G, et al.
Epidemiol Infect. 2016 August 11; Volume 144 (Issue 16); 3520-3526.; DOI:10.1017/S0950268816001758
The epidemiology of surgical site infections (SSIs) in surgical programmes in sub-Saharan Africa is inadequately described. We reviewed deep and organ-space SSIs occurring within a trauma project that had a high-quality microbiology partnership and active follow-up. Included patients underwent orthopaedic surgery in Teme Hospital (Port Harcourt, Nigeria) for trauma and subsequently developed a SSI requiring debridement and microbiological sampling. Data were collected from structured chart reviews and programmatic databases for 103 patients with suspected SSI [79% male, median age 30 years, interquartile range (IQR) 24-37]. SSIs were commonly detected post-discharge with 58% presenting >28 days after surgery. The most common pathogens were: Staphylococcus aureus (34%), Pseudomonas aeruginosa (16%) and Enterobacter cloacae (11%). Thirty-three (32%) of infections were caused by a multidrug-resistant (MDR) pathogen, including 15 patients with methicillin-resistant S. aureus. Antibiotics were initiated empirically for 43% of patients and after culture and sensitivity report in 32%. The median number of additional surgeries performed in patients with SSI was 5 (IQR 2-6), one patient died (1%), and amputation was performed or recommended in three patients. Our findings suggest the need for active long-term monitoring of SSIs, particularly those associated with MDR organisms, resulting in increased costs for readmission surgery and treatment with late-generation antibiotics.