Journal Article > Meta-AnalysisFull Text
Lancet. 2018 September 8; Volume 392 (Issue 10150); 821-834.; DOI:10.1016/S0140-6736(18)31644-1
Ahmad N, Ahuja SD, Akkerman OW, Alffenaar JWC, Anderson LF, et al.
Lancet. 2018 September 8; Volume 392 (Issue 10150); 821-834.; DOI:10.1016/S0140-6736(18)31644-1
BACKGROUND
Treatment outcomes for multidrug-resistant tuberculosis remain poor. We aimed to estimate the association of treatment success and death with the use of individual drugs, and the optimal number and duration of treatment with those drugs in patients with multidrug-resistant tuberculosis.
METHODS
In this individual patient data meta-analysis, we searched MEDLINE, Embase, and the Cochrane Library to identify potentially eligible observational and experimental studies published between Jan 1, 2009, and April 30, 2016. We also searched reference lists from all systematic reviews of treatment of multidrug-resistant tuberculosis published since 2009. To be eligible, studies had to report original results, with end of treatment outcomes (treatment completion [success], failure, or relapse) in cohorts of at least 25 adults (aged >18 years). We used anonymised individual patient data from eligible studies, provided by study investigators, regarding clinical characteristics, treatment, and outcomes. Using propensity score-matched generalised mixed effects logistic, or linear regression, we calculated adjusted odds ratios and adjusted risk differences for success or death during treatment, for specific drugs currently used to treat multidrug-resistant tuberculosis, as well as the number of drugs used and treatment duration.
FINDINGS
Of 12 030 patients from 25 countries in 50 studies, 7346 (61%) had treatment success, 1017 (8%) had failure or relapse, and 1729 (14%) died. Compared with failure or relapse, treatment success was positively associated with the use of linezolid (adjusted risk difference 0·15, 95% CI 0·11 to 0·18), levofloxacin (0·15, 0·13 to 0·18), carbapenems (0·14, 0·06 to 0·21), moxifloxacin (0·11, 0·08 to 0·14), bedaquiline (0·10, 0·05 to 0·14), and clofazimine (0·06, 0·01 to 0·10). There was a significant association between reduced mortality and use of linezolid (-0·20, -0·23 to -0·16), levofloxacin (-0·06, -0·09 to -0·04), moxifloxacin (-0·07, -0·10 to -0·04), or bedaquiline (-0·14, -0·19 to -0·10). Compared with regimens without any injectable drug, amikacin provided modest benefits, but kanamycin and capreomycin were associated with worse outcomes. The remaining drugs were associated with slight or no improvements in outcomes. Treatment outcomes were significantly worse for most drugs if they were used despite in-vitro resistance. The optimal number of effective drugs seemed to be five in the initial phase, and four in the continuation phase. In these adjusted analyses, heterogeneity, based on a simulated I2 method, was high for approximately half the estimates for specific drugs, although relatively low for number of drugs and durations analyses.
INTERPRETATION
Although inferences are limited by the observational nature of these data, treatment outcomes were significantly better with use of linezolid, later generation fluoroquinolones, bedaquiline, clofazimine, and carbapenems for treatment of multidrug-resistant tuberculosis. These findings emphasise the need for trials to ascertain the optimal combination and duration of these drugs for treatment of this condition.
Treatment outcomes for multidrug-resistant tuberculosis remain poor. We aimed to estimate the association of treatment success and death with the use of individual drugs, and the optimal number and duration of treatment with those drugs in patients with multidrug-resistant tuberculosis.
METHODS
In this individual patient data meta-analysis, we searched MEDLINE, Embase, and the Cochrane Library to identify potentially eligible observational and experimental studies published between Jan 1, 2009, and April 30, 2016. We also searched reference lists from all systematic reviews of treatment of multidrug-resistant tuberculosis published since 2009. To be eligible, studies had to report original results, with end of treatment outcomes (treatment completion [success], failure, or relapse) in cohorts of at least 25 adults (aged >18 years). We used anonymised individual patient data from eligible studies, provided by study investigators, regarding clinical characteristics, treatment, and outcomes. Using propensity score-matched generalised mixed effects logistic, or linear regression, we calculated adjusted odds ratios and adjusted risk differences for success or death during treatment, for specific drugs currently used to treat multidrug-resistant tuberculosis, as well as the number of drugs used and treatment duration.
FINDINGS
Of 12 030 patients from 25 countries in 50 studies, 7346 (61%) had treatment success, 1017 (8%) had failure or relapse, and 1729 (14%) died. Compared with failure or relapse, treatment success was positively associated with the use of linezolid (adjusted risk difference 0·15, 95% CI 0·11 to 0·18), levofloxacin (0·15, 0·13 to 0·18), carbapenems (0·14, 0·06 to 0·21), moxifloxacin (0·11, 0·08 to 0·14), bedaquiline (0·10, 0·05 to 0·14), and clofazimine (0·06, 0·01 to 0·10). There was a significant association between reduced mortality and use of linezolid (-0·20, -0·23 to -0·16), levofloxacin (-0·06, -0·09 to -0·04), moxifloxacin (-0·07, -0·10 to -0·04), or bedaquiline (-0·14, -0·19 to -0·10). Compared with regimens without any injectable drug, amikacin provided modest benefits, but kanamycin and capreomycin were associated with worse outcomes. The remaining drugs were associated with slight or no improvements in outcomes. Treatment outcomes were significantly worse for most drugs if they were used despite in-vitro resistance. The optimal number of effective drugs seemed to be five in the initial phase, and four in the continuation phase. In these adjusted analyses, heterogeneity, based on a simulated I2 method, was high for approximately half the estimates for specific drugs, although relatively low for number of drugs and durations analyses.
INTERPRETATION
Although inferences are limited by the observational nature of these data, treatment outcomes were significantly better with use of linezolid, later generation fluoroquinolones, bedaquiline, clofazimine, and carbapenems for treatment of multidrug-resistant tuberculosis. These findings emphasise the need for trials to ascertain the optimal combination and duration of these drugs for treatment of this condition.
Journal Article > Meta-AnalysisFull Text
Int J Infect Dis. 2020 February 1; Volume 92; DOI:10.1016/j.ijid.2020.01.042
Migliori GB, Tiberi S, Zumla A, Petersen E, Chakaya JM, et al.
Int J Infect Dis. 2020 February 1; Volume 92; DOI:10.1016/j.ijid.2020.01.042
The continuous flow of new research articles on MDR-TB diagnosis, treatment, prevention and rehabilitation requires frequent update of existing guidelines. This review is aimed at providing clinicians and public health staff with an updated and easy-to-consult document arising from consensus of Global Tuberculosis Network (GTN) experts. The core published documents and guidelines have been reviewed including the recently published MDR-TB WHO rapid advice and ATS/CDC/ERS/IDSA guidelines. After a rapid review of epidemiology and risk factors, the clinical priorities on MDR-TB diagnosis (including whole genome sequencing and drug-susceptibility testing interpretations) and treatment (treatment design and management, TB in children) are discussed. Furthermore, the review comprehensively describes the latest information on contact tracing and LTBI management in MDR-TB contacts, while providing guidance on post-treatment functional evaluation and rehabilitation of TB sequelae, infection control and other public health priorities.
Journal Article > CommentaryFull Text
Int J Tuberc Lung Dis. 2021 October 1; Volume 25 (Issue 10); 797-813.; DOI: 10.5588/ijtld.21.0425
Migliori GB, Marx FM, Ambrosino N, Zampogna E, Schaaf HS, et al.
Int J Tuberc Lung Dis. 2021 October 1; Volume 25 (Issue 10); 797-813.; DOI: 10.5588/ijtld.21.0425
BACKGROUND
Increasing evidence suggests that post-TB lung disease (PTLD) causes significant morbidity and mortality. The aim of these clinical standards is to provide guidance on the assessment and management of PTLD and the implementation of pulmonary rehabilitation (PR).
METHODS
A panel of global experts in the field of TB care and PR was identified; 62 participated in a Delphi process. A 5-point Likert scale was used to score the initial ideas for standards and after several rounds of revision the document was approved (with 100% agreement).
RESULTS
Five clinical standards were defined: Standard 1, to assess patients at the end of TB treatment for PTLD (with adaptation for children and specific settings/situations); Standard 2, to identify patients with PTLD for PR; Standard 3, tailoring the PR programme to patient needs and the local setting; Standard 4, to evaluate the effectiveness of PR; and Standard 5, to conduct education and counselling. Standard 6 addresses public health aspects of PTLD and outcomes due to PR.
CONCLUSION
This is the first consensus-based set of Clinical Standards for PTLD. Our aim is to improve patient care and quality of life by guiding clinicians, programme managers and public health officers in planning and implementing adequate measures to assess and manage PTLD.
Increasing evidence suggests that post-TB lung disease (PTLD) causes significant morbidity and mortality. The aim of these clinical standards is to provide guidance on the assessment and management of PTLD and the implementation of pulmonary rehabilitation (PR).
METHODS
A panel of global experts in the field of TB care and PR was identified; 62 participated in a Delphi process. A 5-point Likert scale was used to score the initial ideas for standards and after several rounds of revision the document was approved (with 100% agreement).
RESULTS
Five clinical standards were defined: Standard 1, to assess patients at the end of TB treatment for PTLD (with adaptation for children and specific settings/situations); Standard 2, to identify patients with PTLD for PR; Standard 3, tailoring the PR programme to patient needs and the local setting; Standard 4, to evaluate the effectiveness of PR; and Standard 5, to conduct education and counselling. Standard 6 addresses public health aspects of PTLD and outcomes due to PR.
CONCLUSION
This is the first consensus-based set of Clinical Standards for PTLD. Our aim is to improve patient care and quality of life by guiding clinicians, programme managers and public health officers in planning and implementing adequate measures to assess and manage PTLD.