

Self-transfer and mortality amongst adults lost to follow-up in ART programmes in low and middle-income countries: systematic review and meta-analysis

Authors	Wilkinson, Lynne S; Skordis-Worrall, Jolene; Ajose, Olawale; Ford, Nathan
Citation	Self-transfer and mortality amongst adults lost to follow-up in ART programmes in low and middle-income countries: systematic review and meta-analysis. 2014: Trop. Med. Int. Health
DOI	10.1111/tmi.12434
Publisher	Wiley-Blackwell
Journal	Tropical Medicine & International Health : TM & IH
Rights	Archived on this site with the kind permission of Wiley-Blackwell, [url] http://www.blackwell-synergy.com/loi/tmi [/url]
Download date	03/10/2021 18:26:59
Link to Item	http://hdl.handle.net/10144/336620

Self-transfer and mortality amongst adults lost to follow-up in ART programmes in low and middle-income countries: systematic review and meta-analysis

Lynne S. Wilkinson¹, Jolene Skordis-Worrall¹, Olawale Ajose², Nathan Ford³

¹ UCL Institute for Global Health/Médecins Sans Frontières, London, UK

² Clinton Health Access Initiative, Place??, USA

³ World Health Organization, Geneva, Switzerland

Abstract

Objective: To ascertain estimates of adult patients, recorded as lost to follow-up (LTFU) within antiretroviral treatment (ART) programmes, who have self-transferred care, died or truly stopped ART in low- and middle-income countries.

Methods: PubMed, EMBASE, Web of Science, Science Direct, LILACS, IndMed and AIM databases (2003-2013) and IAS/AIDS conference abstracts (2011-2013) were searched for tracing studies reporting the proportion of traced patients found to have self-transferred, died or stopped ART. These estimates were then combined using random-effects meta-analysis. Risk of bias was assessed through subgroup and sensitivity analyses.

Results: 28 studies were eligible for inclusion, reporting true outcomes for 10,806 traced patients attending approximately 258 ART facilities. None were from outside sub-Saharan Africa. 23 studies reported 4.5-54.4% traced LTFU patients self-transferring care, providing a pooled estimate of 18.6% (95% CI 15.8-22.0%). A significant positive association was found between rates of self-transfer and LTFU in the ART cohort. The pooled estimates for unreported deaths was 38.8% (95% CI 30.8-46.8%; 27 studies), and 28.6% (95% CI 21.9-36.0%; 20 studies) for patients stopping ART. A significant decrease in unreported deaths from 50.0% (95% CI 41.5-58.4%) to 30.0% (95% CI 21.1-38.9%) was found comparing study periods before and after 31/12/2007.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/tmi.12434

This article is protected by copyright. All rights reserved.

Conclusions: Substantial unaccounted for transfers and deaths among patients LTFU confirms that retention and mortality is underestimated where the true outcomes of LTFU patients are not ascertained.

Keywords: HIV; antiretroviral therapy; lost to follow-up; mortality; continuity of care; systematic review

Introduction

Retention in care is a key measure of the success of HIV treatment programmes. In sub-Saharan Africa, around a third of patients are reported as lost to follow-up (LTFU) within three years of initiating antiretroviral therapy (ART) (Fox and Rosen 2010). LTFU is a general term for largely unknown outcomes of patients that have not returned to a particular clinic to collect their next supply of ART. True outcomes for such patients can be divided into 3 categories: patients who have self-transferred to another facility, those who have died, and those who have discontinued treatment (McMahon et al. 2013, Brinkhof et al. 2009).

With expanding ART coverage, increased decentralisation of ART services to primary healthcare and growing patient confidence to select where to access ART, patients are increasingly transferring between ART providing facilities (Geng et al. 2010b, Nglazi et al. 2013). These transfers may be formal or undocumented, the latter are referred to in this paper as 'self-transfers'. Self-transfers may occur for both health system and personal reasons including: facility congestion and perceptions of depersonalised services, permanent or temporary relocation, lack of patient awareness of transferring processes, and ease of transferring without documentation due to increasing numbers of ART providers (Wubshet et al. 2013, Mben et al. 2012, Nglazi et al. 2013). Failure to account for patients self-transferring care can result in underestimated retention in ART care. Accurate retention outcomes are essential to ensure appropriate forecasting, costing and supply chain management of human resource requirements, drugs and laboratory investigations, and to measure the success of ART scale-up (Twanya et al. 2013).

True outcomes of patients classified as LTFU are generally determined by either active tracing or data linkage to national death registries (Geng et al. 2010b, Van Cutsem et al. 2011). While some ART programmes in low- and middle-income countries conduct tracing routinely, this is not generally done due to resource constraints. More commonly, tracing studies have been conducted at a specific time point on either all or a sample of patients who are LTFU, to improve classification of unknown outcomes and link patients back into care (McMahon et al. 2013, Rosen and Ketlhapile 2010, Geng et al. 2010a).

Two previous reviews have highlighted substantial numbers of self-transfers amongst LTFU patients. The first, a systematic review, reported self-transfer rates of 12-54% amongst patients found alive (Brinkhof et al. 2009). The second, a narrative review, estimated a crude unweighted median self-transfer rate of 48.5% amongst those reported in 14 cited studies as LTFU (Geng et al. 2010b).

We systematically reviewed outcomes reported in tracing studies of adult ART patients who are reported as LTFU in low- and middle-income countries (LMICs) to provide an updated assessment of the extent to which self-transfers – a positive outcome - contributed to the overall proportion of people considered to be lost to care.

Methods

Search strategy

We followed the approach set out in the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines (Moher et al. 2009). Using a predetermined study protocol (see Web Appendix), we searched seven databases – Pubmed, EMBASE, Science Direct, Web of Science, Latin American and Caribbean Health Sciences Literature (LILACS), Indian Medlars Centre (IndMed) and African Index Medicus (AIM) – from 1 January 2003 to 31 December 2013 to identify observational cohort studies reporting true outcomes of patients LTFU in LMICs. Randomised and non-randomized controlled trials were excluded as these cannot provide representative estimates of LTFU rates in programme settings. Highly sensitive search strategies were developed for each database with the assistance of a professional librarian (Umscheid 2013), as detailed in the study protocol.

We also searched the conference abstract sites of all conferences of the International AIDS Society from 2011-2013 to enable inclusion of data from studies not published to date. All systematic reviews and editorial articles identified, and selected studies' reference lists were manually searched to identify further studies for eligibility assessment (Moher et al. 2009, Liberati et al. 2009).

Study selection and data extraction

Studies reporting on HIV patients on ART in LMICs with LTFU as an outcome were included provided true outcomes of all or a subset of LTFU patients were ascertained by tracing. We excluded studies that reported on infant, paediatric, adolescent or prevention-of-mother-to-child transmission (PMTCT) specific cohorts, as well as studies that reported LTFU among patients prior to initiating ART, unless ART outcomes were also reported and able to be disaggregated.

Where more than one study reported on the same cohort, the study reporting on the largest cohort was included. Where identical cohorts were published, the study with the latest publication date was included to obtain the most updated data. Study eligibility assessment was done by one reviewer (LW) and confirmed by a second reviewer who assessed 10% of titles and 100% of full articles for eligibility (NF); any discrepancies were resolved by a third reviewer (JSW). Data were extracted by one reviewer (LW) and verified by a second reviewer (OA) using a standardized data extraction form. Information was extracted on study and programme characteristics (study period, location, and country of study, urban or rural setting and provider type); cohort characteristics (number of adult patients initiated on ART; definition of LTFU; number of reported deaths or formal transfers and number meeting the LTFU definition) and outcomes (number of patients in the tracing study, number traced, tracing methods, reasons for failed tracing, and outcomes). Where discrepancies arose, these were resolved in consultation with a third reviewer (NF).

To provide consistency across studies, the following three standardised approaches were taken. Firstly, patients who could not be traced due to incorrect contact details or living outside the tracing area were included in the tracing study cohort. Secondly, study participants identified through tracing efforts to have relocated were considered untraceable (their true outcomes remaining unknown). Lastly, study participants reported to be obtaining ART privately were included as self-transfers.

Assessment of heterogeneity and risk of bias in included studies and across studies

Selected studies were assessed for study level and outcome-level risk of bias using the following criteria, which if not met or uncertain whether met, indicated a risk of bias: published in peer reviewed journal; prospective study design; all or a random sample of LTFU patients included; more than two thirds of study participants traced; disaggregated adult data reported; and method of tracing included home visits where the patient could not be reached by telephone. Where the study did not trace all or a random sample of patients, had limited tracing success or only traced by telephone, there is a risk that true outcome results of the study may be affected by selection bias. Where the study aggregated tracing outcomes for adults and children, there was an increased risk that LTFU, tracing success rates and tracing outcomes may be biased by the paediatric cohort. Risk of bias categories were not scored for purposes of the meta-analyses due to the inherent subjectivity in such approaches, but the potential influence of various study characteristics was explored through subgroup or sensitivity analysis (Jüni et al. 1999, Umscheid 2013).

The risk of bias assessment (Web Appendix) was used as part of the overall assessment of the quality of the evidence.

Statistical analysis and data synthesis

This study's primary outcome is the percentage of traced LTFU patients determined to have self-transferred care in each included study. The secondary outcomes are the percentage determined to have died and stopped ART. Point estimates and 95% confidence intervals (CI) were calculated for individual studies and combined using random-effects meta-analysis on the arcsin scale, then back transformed prior to pooling (Freeman 1950, Miller 1978). Combined estimates were transformed back to percentages. Heterogeneity between included studies was assessed visually by forest plot and statistically by estimating the τ^2 statistic (Higgins et al. 2003, Rücker et al. 2008).

The association between the primary outcome and the proportion LTFU in the ART cohort was explored using univariate random effects meta-regression. In addition, subgroup analyses were undertaken to determine the potential influence risk of bias covariates, study period and LTFU period on the primary and secondary outcomes. Study period stratification was grouped into those ending before and after 31/12/2007. 2008 was the year in which the WHO recommended decentralization of ART services (WHO 2008), and by which time a number of high burden HIV countries had already started implementing decentralization, including Malawi, Mozambique, South Africa and Swaziland (Lowrance et al. 2008, Decroo et al. 2011, Boulle et al. 2008, van Schalkwyk et al. 2013). LTFU period was stratified into less or more than 3 months from the patient's last visit due to most studies defining LTFU for tracing purposes as less than 6 months and approximately half defining such period as less than 3 months. Sensitivity analyses were carried out to determine the potential influence of studies that combined outcomes for adults and children, and studies that reported outcomes on an incomplete or non-random sample of patients.

Analyses were done in STATA Version 13(StataCorp 2013).

Results

Study selection and characteristics of inclusions

From the initial search, 2597 published items were retrieved and another 364 items identified from other sources, including 3 from reference lists and 361 from conferences. Of these, 36 met the eligibility criteria, including 29 full text journal articles and 7 abstracts from conferences (Figure 1). 8 studies reported on the same cohort of traced patients. This systematic review therefore included 28 studies that described true outcomes of 10,806 LTFU patients attending approximately 258 ART providing facilities.

A total of 12 countries were represented, all in sub-Saharan Africa, with a third (9/28) from South Africa. 12 study cohorts were drawn from urban areas, 6 from rural, and 10 included both urban and rural cohorts. The vast majority of studies were conducted in public sector facilities with only 2 from the private sector, one of which was a workplace programme (Dahab et al. 2011). 15 studies were conducted in adult cohorts, 5 reported data for adults and children, and the remainder did not specify. Study characteristics are summarized in Table 1.

Cohort size varied from 352 (Kato et al. 2013) to 47,858 (Toure et al. 2012) patients initiated on ART. These cohorts were drawn from 1 to 138 healthcare facilities. The percentage of patients classified as LTFU for tracing purposes ranged from 2.7% (Maskew et al. 2007) to 55.4% (Alamo et al. 2012). Most tracing studies attempted to trace all LTFU patients, with 3 studies tracing a random sample of patients, 2 studies tracing a non-random sample (Omotoso 2011, Krebs et al. 2008) and 1 study only reporting on the number of patients traced (Mben et al. 2012).

There was extensive variability in LTFU definitions applied for the purposes of determining the study cohort for tracing. The period for which a patient was missing before they were considered LTFU ranged from 1 week to 6 months. This period also varied from either time since last visit (6 studies) or time since missed appointment (16 studies). 2 studies provided no definition for LTFU. Reporting of tracing methods was also heterogeneous and not well described in a number of studies; 5 studies only attempted to contact patients by telephone, 21 studies attempted to trace by home visit either after failed telephone contact or not, and 2 studies only reported the number of tracing attempts not the method.

Overall, the quality of evidence contributing to the assessment of true outcomes of traced LTFU patients was considered to be low to moderate, mainly due to the risk of bias within studies, inconsistency in results, and imprecision in estimates.

True outcomes of LTFU patients traced

A total of 10,806 patients were traced, representing 16.6-96.3% of the overall tracing study cohort. Table 2 summarises the number of patients traced and their true outcomes. Figures 2 - 4 summarizes the percentage of traced patients who self-transferred, died and stopped ART in each study reporting such outcomes, including confidence intervals (CI) for the point estimates. The combined self-transfer summary estimate from random effects meta-analysis is 18.6% (95% CI 15.8-22.0%). There was extensive heterogeneity (τ^2 0.08, $p < 0.000$). The combined summary estimate from random effects meta-analysis for death was 38.8% (95% CI 30.8-46.8%) and patients stopping ART was 28.6% (95% CI 21.9-36.0%).

In the random effects meta-regression (Figure 5), there was a statistically significant positive association between the proportion who self-transferred amongst those traced and the proportion LTFU in the overall ART cohort (β -coefficient 0.5, 95% CI 0-0.9).

Subgroup and sensitivity analysis and investigation of heterogeneity

Published studies reported a significantly higher percentage of self-transfers (21.8%, 95%CI 16.2-27.3%) than conference abstracts (8.0%, 95%CI 6.3-9.7%) ($p=0.03$). Study period and tracing method significantly influenced the percentage of unreported deaths. The percentage of deaths decreased from 50.0% (95% CI 41.5-58.4) to 30.0% (95% CI 21.1-38.9%) in study periods ending after 31/12/2007, with a lower percentage of deaths ascertained where tracing was only attempted by telephone (21.8%, 95%CI 13.9-29.6% v 42.6%, 95%CI 31.8-53.5%).

A tendency towards a lower self-transfer percentage was found where study periods ended before *versus* after 31/12/2007 (16.6%, 95% CI 12.5-20.8% v 20.3%, 95% CI 15.7-25.0%), and where fewer *versus* two-thirds or more study participants were traced (16.0%, 95% CI 12.3-19.7% v 23.1%, 95% CI 15.0-31.2%).

In sensitivity analysis, exclusion of studies aggregating outcomes for adults and children, or not specifying population age, led to a non-statistically significant increase in percentage of self-transfers (23.8%, 95%CI 15.8-31.8%). Exclusion of non-random tracing cohorts made no difference. There was also no statistically significant difference to the summary estimates of deaths or stopping ART when performing the same sensitivity analyses.

Discussion

This review found that almost one in five ART patients initially reported as LTFU had self-transferred and was retained in ART care. This finding implies that retention in ART care in sub-Saharan Africa is underestimated due to unknown outcomes of LTFU patients. There is evidence that self-transfers have increased after the scale up of ART coverage and decentralization. The significant positive association found in our study between self-transfer and LTFU proportions means that programmes with higher LTFU rates can expect higher self-transfer rates and a greater underestimation of retention. Two explanations may provide insight into this finding. Firstly, LTFU rates have been found to positively correlate with ART programme size (Boulle et al. 2010) and programme expansion rates (Grimsrud et al. 2014) and it is possible that as cohort sizes expand, patients are more likely to self-transfer. Secondly, higher LTFU rates have been found in centralized than primary healthcare facilities (Fatti et al. 2010), indicating that patients may self-transfer as the number of facilities offering ART increases and patients are able to access facilities closer to home.

This review also provides an updated summary estimate of 38.8% (95% CI 30.8-46.8%) for mortality among ART patients LTFU, compared with 42% (95% CI 34-50%) found previously (Brinkhof et al. 2009). Importantly, we found a significant decrease from 50% (95% CI 42-58%) to 30% (95% CI 21-39%) in deaths identified by tracing studies with study periods ending after 31/12/2007. This may be attributable to growing access to ART (Grimsrud et al. 2014) and the reduction in the risk of death associated with patients in LMICs initiating ART with higher CD4 counts (Gupta et al. 2011, Avila et al. 2014).

This review differs in several ways from the previous systematic review of outcomes among patients LTFU published in 2009 (Brinkhof et al. 2009). We excluded studies reporting pre-ART outcomes; we report the proportion of self-transfers as a percentage of those traced (not of those found alive upon tracing); and we include data up to the end of 2013, which allowed for the inclusion of outcomes for more than double the number of traced patients.

There are inherent limitations to systematic reviews, especially those summarising results from research conducted in routine care settings. This review has a number of limitations. Firstly, systematic reviews of routine programme outcomes are by definition prone to publication bias, as evidenced by the fact that no studies were identified that reported outcomes from LMICs outside of sub-Saharan Africa. It does not appear, however, that publication bias has favoured the reporting of positive findings as there was substantial variability between studies, including a number of studies reporting relatively high rates of negative outcomes. Secondly, heterogeneous definitions of LTFU for tracing purposes may mean that studies with shorter intervals were likely to have the number of LTFU patients exaggerated by treatment interrupters (i.e. patients who return to care after a short period of absenteeism) (Shepherd et al. 2013), thereby increasing the size of the tracing study cohorts. While the number of patients who self-transferred or died should not change, our LTFU definition may have influenced self-transfer and death rates. Thirdly, the lower self-transfer rate found when limiting the meta-analysis to studies with poor tracing success suggests that large numbers of untraceable patients may underestimate the self-transfer rate (this was not the case for the percentage deaths). Fourthly, it may not be appropriate to assume that the true outcomes of untraceable patients are comparable to those who were traced. Patients with lower socio-economic status are more likely to stop ART than self-transfer (Marson et al. 2013), and access to a telephone (which facilitates tracing) may be an indicator of better socioeconomic status, which in turn may influence survival. Patients who relocate are also less likely to be traced. Due to the risk that true outcome results of tracing studies may be affected by selection bias, correction of retention and mortality should be investigated through sensitivity analysis using a range of plausible self-transfer and mortality estimates. Lastly, tracing studies used heterogeneous approaches to reporting outcomes that may influence the comparability of findings reported.

This review reported tracing a large number of LTFU patients in both rural and urban ART programmes in 12 sub-Saharan African countries, 11 of which are regarded as high HIV prevalence countries (WHO 2013). The vast majority of studies reported on public sector cohorts. These findings may therefore be representative of high prevalence public sector sub-Saharan African cohorts, but may not be directly generalizable beyond this setting.

These findings confirm the value of tracing patients LTFU, both to ensure appropriate care is provided for the individual and to improve the accuracy of outcome reporting for the overall programme. Due to heterogeneous programmes and contexts, retention and mortality should ideally be reported after tracing all or a random sample of LTFU patients. Where this is not feasible, retention and mortality estimates need to be adjusted to account for self-transferred patients and unreported deaths. The estimates provided by this study can be used to inform outcomes amongst patients recorded as LTFU in sub-Saharan Africa.

In addition, these findings emphasise the importance of health systems accounting for patient mobility and transfer as a normal and expected evolution in ART scale-up. Transfers need to be easily accounted for by monitoring systems so that self-transfers are not counted as LTFU. This could be achieved by encouraging the use of unique patient identifiers that allow tracking of patients across facilities through standardized integrated monitoring systems (Harries et al. 2010, Fox et al. 2012). Such systems are unfortunately not perfect and mechanisms need to be put in place to ensure patients are not issued with a new unique identifier at the new facility (McGuire et al. 2010). Alternative strategies could include strengthening referral systems and ensuring a regular exchange of information between facilities (Egger et al. 2011). As the number of sites providing ART increases, patient mobility is likely to become more common and should be supported by increasing patient awareness and understanding of transfer procedures (Mben et al. 2012), removing any pre-conditions for transfer (Wubshet et al. 2013), simplifying facility processes for transfer (Miller et al. 2010) and providing incentives in the form of a longer supply of ART. Longer ART supply also helps cover the period of moving between facilities thereby limiting unnecessary treatment interruptions (Grimsrud et al. 2013, Twanya et al. 2013). Health authorities should encourage facilities to be “transfer friendly” so that patients feel comfortable with communicating their intention to transfer.

This systematic review provides several directions for future research. ART programmes should continue to publish tracing studies undertaken as these provide valuable data to inform future updated systematic reviews and meta-analysis. In particular, tracing studies are required from LMICs beyond sub-Saharan Africa and with study periods after 2010, to further assess whether self-transfers increase and unreported deaths decrease with growing ART access and coverage. Future reviews would be less prone to bias and provide a better quality of evidence if tracing studies followed a standardized approach to reporting outcomes. It is particularly important to report on outcomes of LTFU patients rather than cases traced and not only on deaths ascertained but patients who self-transfer, stop ART and return to care before and after tracing. Tracing studies should further aim to ascertain the reasons for a patient self-transferring care. Patients who have stopped ART should be asked if they initially intended transferring their care and which obstacles prevented such transfer. This would allow assessment of obstacles to transfer notification and their impact on continuity of care. Lastly, studies describing appropriate retention adjustment models are necessary to provide guidance to those reporting ART cohort outcomes in the future.

In conclusion, ART programmes with high LTFU rates can expect large numbers of self-transfers ‘hidden’ in the LTFU classification. To protect against inappropriate disinvestment from, and poor forecasting for, ART care provision, retention estimates need to be adjusted to account for self-transfers.

Acknowledgements and Disclaimer

We acknowledge and thank the following authors, who provided additional data or clarifications to their published studies or conference abstracts: Cara O'Connor, Paula Braitstein, Daniel Ochieng, Kebede Deribe, Hilary Gunguwo, Hannock Twanya and Mar Pujades Rodriguez. The views expressed in the submitted article are the authors own and not the official position of any of their associated institutions.

References

Alamo S T, Colebunders R, Ouma J et al. (2012a). Socio-economic support reduces non-retention in care in a comprehensive community based program in Uganda. *J Acquir Immune Defic Syndr*, 59, e52-e59.

Alamo S T, Colebunders R, Ouma J et al. (2012b). Return to normal life after AIDS as a reason for lost to follow-up in a community-based antiretroviral treatment program. *J Acquir Immune Defic Syndr*, 60, e36-45.

Avila D, Althoff K N, Mugglin C et al. (2014). Immunodeficiency at the start of combination antiretroviral therapy in low-, middle-, and high-income countries. *J Acquir Immune Defic Syndr*, 65, e8-16.

Bisson G P, Gaolathe T, Gross R et al. (2008). Overestimates of survival after HAART: implications for global scale-up efforts. *PLoS One*, 3, e1725.

Bor J, Herbst A J, Newell M-L & Bärnighausen T (2013). Increases in adult life expectancy in rural South Africa: valuing the scale-up of HIV treatment. *Science*, 339, 961-965.

Boulle A, Bock P, Osler M et al. (2008). Antiretroviral therapy and early mortality in South Africa. *Bulletin of the World Health Organization*, 86, 678-687.

Boulle A, Van Cutsem G, Hilderbrand K et al. (2010). Seven-year experience of a primary care antiretroviral treatment programme in Khayelitsha, South Africa. *AIDS*, 24, 563-572.

Brinkhof M W, Dabis F, Myer L et al. (2008). Early loss of HIV-infected patients on potent antiretroviral therapy programmes in lower-income countries. *Bulletin of the World Health Organization*, 86, 559-567.

Brinkhof M W, Pujades-Rodriguez M & Egger M (2009). Mortality of patients lost to follow-up in antiretroviral treatment programmes in resource-limited settings: systematic review and meta-analysis. *PLoS One*, 4, e5790.

Caluwaerts C, Maendaenda R, Maldonado F et al. (2009). Risk factors and true outcomes for lost to follow-up individuals in an antiretroviral treatment programme in Tete, Mozambique. *International Health*, 1, 97-101.

Chima I & Lupondwana P. How soon should ART defaulters be traced? Characteristics and outcomes of defaulters attending an antiretroviral treatment clinic in Vryheid Hospital, South Africa. 6th IAS Conference on HIV Pathogenesis and Treatment, 2011 Rome. Abstract no. MOPE466.

Dahab M, Kielmann K, Charalambous S et al. (2011). Contrasting Reasons for Discontinuation of Antiretroviral Therapy in Workplace and Public-Sector HIV Programs in South Africa. *Aids Patient Care and Stds*, 25, 53-59.

Dalal R P, Macphail C, Mqhayi M et al. (2008). Characteristics and outcomes of adult patients lost to follow-up at an antiretroviral treatment clinic in johannesburg, South Africa. *J Acquir Immune Defic Syndr*, 47, 101-7.

Decroo T, Telfer B, Biot M et al. (2011). Distribution of antiretroviral treatment through self-forming groups of patients in Tete province, Mozambique. *J Acquir Immune Defic Syndr*, 56, e39-e44.

Deribe K, Hailekiros F, Biadgilign S et al. (2008). Defaulters from antiretroviral treatment in Jimma University Specialized Hospital, Southwest Ethiopia. *Trop Med Int Health*, 13, 328-33.

Egger M, Spycher B D, Sidle J et al. (2011). Correcting mortality for loss to follow-up: a nomogram applied to antiretroviral treatment programmes in sub-Saharan Africa. *PLoS medicine*, 8, e1000390.

Fatti G, Grimwood A & Bock P (2010). Better antiretroviral therapy outcomes at primary healthcare facilities: an evaluation of three tiers of ART services in four South African provinces. *PLoS One*, 5, e12888.

Fox M P, Larson B & Rosen S (2012). Defining retention and attrition in pre-antiretroviral HIV care: proposals based on experience in Africa. *Trop Med Int Health*, 17, 1235-1244.

Fox M P & Rosen S (2010). Patient retention in antiretroviral therapy programs up to three years on treatment in sub-Saharan Africa, 2007-2009: systematic review. *Trop Med Int Health*, 15 Suppl 1, 1-15.

Freeman M (1950). Transformations Related to the Angular and the Square Root. *Annals of Mathematical Statistics*, 21.

Geng E H, Glidden D V, Bwana M B et al. (2011). Retention in care and connection to care among HIV-infected patients on antiretroviral therapy in Africa: estimation via a sampling-based approach. *PLoS One*, 6, e21797.

Geng E H, Glidden D V, Emenyonu N et al. (2010a). Tracking a sample of patients lost to follow-up has a major impact on understanding determinants of survival in HIV-infected patients on antiretroviral therapy in Africa. *Trop Med Int Health*, 15 Suppl 1, 63-9.

Geng E H, Nash D, Kambugu A et al. (2010b). Retention in care among HIV-infected patients in resource-limited settings: emerging insights and new directions. *Curr HIV/AIDS Rep*, 7, 234-44.

Grimsrud A, Balkan S, Casas E C et al. (2014). Outcomes of antiretroviral therapy over a 10-year period of expansion: a multicohort analysis of African and Asian HIV programmes. *J Acquir Immune Defic Syndr*.

Grimsrud A, Patten G, Sharp J et al. (2013). Extending dispensing intervals for stable patients on ART. *J Acquir Immune Defic Syndr*, 66, e58-e60.

Gunguwo H, Chaibva C, Maseko U et al. True outcomes of patients lost to follow-up on antiretroviral therapy at a large central hospital OI/ART clinic in Bulawayo, Zimbabwe. 19th International AIDS Conference, 2012 Washington. Abstract no. TUPE064.

Gupta A, Nadkarni G, Yang W-T et al. (2011). Early mortality in adults initiating antiretroviral therapy (ART) in low-and middle-income countries (LMIC): a systematic review and meta-analysis. *PLoS One*, 6, e28691.

Harries A D, Zachariah R, Lawn S D & Rosen S (2010). Strategies to improve patient retention on antiretroviral therapy in sub-Saharan Africa. *Trop Med Int Health*, 15 Suppl 1, 70-5.

Higgins J P, Thompson S G, Deeks J J & Altman D G (2003). Measuring inconsistency in meta-analyses. *BMJ*, 327, 557.

Jüni P, Witschi A, Bloch R & Egger M (1999). The hazards of scoring the quality of clinical trials for meta-analysis. *JAMA*, 282, 1054-1060.

Kato T, Yasutaka Y, Komada K et al. Further investigation to address the details of the poor outcome based on prospective cohort study of HIV-infected patients in rural area of Zambia. 7th IAS Conference on HIV Pathogenesis and Treatment, 2013 Kuala Lumpur. Abstract no. TULBPE38

Krebs D W, Chi B H, Mulenga Y et al. (2008). Community-based follow-up for late patients enrolled in

a district-wide programme for antiretroviral therapy in Lusaka, Zambia. *AIDS Care*, 20, 311-7.

Liberati A, Altman D G, Tetzlaff J et al. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. *BMJ*, 339, b2700.

Lowrance D W, Makombe S, Harries A D et al. (2008). A public health approach to rapid scale-up of antiretroviral treatment in Malawi during 2004-2006. *J Acquir Immune Defic Syndr*, 49, 287-293.

Marson K G, Tapia K, Kohler P et al. (2013). Male, Mobile, and Moneyed: Loss to Follow-Up vs. Transfer of Care in an Urban African Antiretroviral Treatment Clinic. *PLoS ONE*, 8.

Maskew M, MacPhail P, Menezes C & Rubel D (2007). Lost to follow up: contributing factors and challenges in South African patients on antiretroviral therapy. *S Afr Med J*, 97, 853-7.

Mben J, Kouanfack C, Essomba C et al. (2012). Operational research and HIV policy and guidelines: Lessons from a study of patients lost to follow-up from a public antiretroviral treatment program in Cameroon. *Journal of Public Health Policy*, 33, 462-477.

McGuire M, Munyenjembe T, Szumilin E et al. (2010). Vital status of pre-ART and ART patients defaulting from care in rural Malawi. *Trop Med Int Health*, 15 Suppl 1, 55-62.

McMahon J H, Elliott J H, Hong S Y et al. (2013). Effects of physical tracing on estimates of loss to follow-up, mortality and retention in low and middle income country antiretroviral therapy programs: a systematic review. *PLoS One*, 8, e56047.

Miller C M, Kethhapile M, Rybasack-Smith H & Rosen S (2010). Why are antiretroviral treatment patients lost to follow-up? A qualitative study from South Africa. *Trop Med Int Health*, 15 Suppl 1, 48-54.

Miller J (1978). The Inverse of the Freeman-Tukey Double Arcsine Transformation. *The American Statistician*, 32.

Moher D, Liberati A, Tetzlaff J & Altman D G (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ*, 339, b2535.

Mutevedzi P C, Lessells R J & Newell M (2013). Disengagement from care in a decentralised primary health care antiretroviral treatment programme: cohort study in rural South Africa. *Trop Med Int Health*, 18, 934-941.

Nglazi M D, Kaplan R, Orrell C et al. (2013). Increasing transfers-out from an antiretroviral treatment service in South Africa: patient characteristics and rates of virological non-suppression. *PLoS One*, 8, e57907.

O'Connor C, Osih R & Jaffer A (2011). Loss to follow-up of stable antiretroviral therapy patients in a decentralized down-referral model of care in Johannesburg, South Africa. *J Acquir Immune Defic Syndr*, 58, 429-32.

Omotoso O. Experiences and challenges of a novel tracking approach to enhance client retention in rural HIV clinics of North East Nigeria. 6th IAS Conference on HIV Pathogenesis and Treatment:, 2011 Rome. Abstract no. MOPE433

Onoka C A, Uzochukwu B S, Onwujekwe O E et al. (2012). Retention and loss to follow-up in antiretroviral treatment programmes in southeast Nigeria. *Pathog Glob Health*, 106, 46-54.

Peltzer K, Ramlagan S, Khan M S & Gaede B (2011). The social and clinical characteristics of patients on antiretroviral therapy who are 'lost to follow-up' in KwaZulu-Natal, South Africa: a prospective study. *Sahara J*, 8, 179-86.

Rosen S & Ketlhapile M (2010). Cost of using a patient tracer to reduce loss to follow-up and ascertain patient status in a large antiretroviral therapy program in Johannesburg, South Africa. *Trop Med Int Health*, 15 Suppl 1, 98-104.

Rücker G, Schwarzer G, Carpenter J R & Schumacher M (2008). Undue reliance on I2 in assessing heterogeneity may mislead. *BMC medical research methodology*, 8, 79.

Saka B, Landoh D E, Patassi A et al. (2013). Loss of HIV-infected patients on potent antiretroviral therapy programs in Togo: Risk factors and the fate of these patients. *Pan African Medical Journal*, 15.

Shepherd B E, Blevins M, Vaz L M et al. (2013). Impact of definitions of loss to follow-up on estimates of retention, disease progression, and mortality: application to an HIV program in Mozambique. *Am J Epidemiol*, 178, 819-28.

Sie C, Anthony T, Essoi B et al. Using cell phones to track patients lost-to-follow up (LTFU): the Elizabeth Glaser Pediatric AIDS Foundation (EGPAF)'s experience in Cote d'Ivoire. 6th IAS Conference on HIV Pathogenesis and Treatment, 2011 Rome. Abstract no. MOPE478.

StataCorp. (2013). *Stata Statistical Software: Release 13/IC* [Online]. StataCorp LP, College Station, Texas, US

Toure S, Dakoury N, Adouko S et al. Using an individualized data base, phone calls and home visits to improve the patients tracking. 19th International AIDS Conference: , 2012 Washington. Abstract no. TUPE676.

Twanya H, Feldacker C, Estill J et al. (2013). Are They Really Lost? "True" Status and Reasons for Treatment Discontinuation among HIV Infected Patients on Antiretroviral Therapy Considered Lost to Follow Up in Urban Malawi. *PLoS ONE*, 8.

Umscheid C A (2013). A Primer on Performing Systematic Reviews and Meta-analyses. *Clin Infect Dis*, 57, 725-34.

Van Cutsem G, Ford N, Hildebrand K et al. (2011). Correcting for mortality among patients lost to follow up on antiretroviral therapy in South Africa: a cohort analysis. *PLoS One*, 6, e14684.

van Schalkwyk C, Mndzebele S, Hlophe T et al. (2013). Outcomes and Impact of HIV Prevention, ART and TB Programs in Swaziland—Early Evidence from Public Health Triangulation. *PloS one*, 8, e69437.

Weigel R, Hochgesang M, Brinkhof M W et al. (2011). Outcomes and associated risk factors of patients traced after being lost to follow-up from antiretroviral treatment in Lilongwe, Malawi. *BMC Infect Dis*, 11, 31.

WHO. (2008). *Operations manual for delivery of HIV prevention, care and treatment at primary health centres in high-prevalence, resource-constrained settings* [Online]. World Health Organization. Available: http://www.who.int/hiv/pub/imai/operations_manual/en/ [Accessed 28 May 2014].

WHO. (2013). *Global update on HIV treatment 2013: Results, impact and opportunities* [Online]. WHO; UNICEF; UNAIDS. Available: http://apps.who.int/iris/bitstream/10665/85326/1/9789241505734_eng.pdf [Accessed 16 July 2014].

Wubshet M, Berhane Y, Worku A & Kebede Y (2013). Death and seeking alternative therapy largely accounted for lost to follow-up of patients on ART in northwest Ethiopia: a community tracking survey. *PLoS One*, 8, e59197.

Yu J K, Chen S C, Wang K Y et al. (2007). True outcomes for patients on antiretroviral therapy who are "lost to follow-up" in Malawi. *Bull World Health Organ*, 85, 550-4.

Corresponding author: Lynne S. Wilkinson¹ UCL Institute for Global Health/Médecins Sans Frontières, Capetown, South Africa. Email lynneswilkinson@yahoo.com

Table 1: Characteristics of included studies and cohorts

N	First author/ Year	Study peri- od	Loca- tion	Set- ting	Sec- tor	Study popu- lation age	No. site s in co- hor- t	LTFU defi- nition for tracing purposes	Tracing method	No. start	No. LTF	No. in trac- ing stu- dy
										ART in stud- y co- co- hort	U (%)	in trac- ing stu- dy (%)
1	Alamo et al 2012b	2001- 2010	Kam- pala, Ugan- da	Ur- ban	NG O	Adult	1	Missed ap- pointment >3 months	2 home visits	2713	15 * 02 * (55 .4)	164 □ (10. 9)
2	Bisson et al 2008	2003	Gabo- rone, Bot- swana	Ur- ban	Pub- lic	Adult	1	Missed ap- pointment > 1 month	3 tele- phone call at- tempts, if unsuc- cessful home visit	410	68	68 (16 .6) (10 0)
3	Caluwa- erts et al 2009	2002- 2007	Tete, Moza- mbique	Ur- ban	Pub- lic	Adult/ Paedi- atric	1	Missed ap- pointment >2 months	If volun- teer knew out- come record- ed, oth- erwise home visit	2818	59 4 (21 .1)	594 (10 0)

4	Chima & Lupondwana	2008-2009	Vryheid, South Africa	Urban	Public	Mixed	1	Missed appointment	Telephone calls and home visits	NR	343	343
		2011									3	(100)
5	Dahab et al 2011	2005-2007	Gauteng & North west, South Africa	Rural & Urban	Public & Private	Adult	2	Missed 6m appointment >1 month	3 attempts made to trace patient (methods NR)	411	95	95
6	Dalal et al 2008	2004-2005	Johannesburg, South Africa	Urban	Public	Adult	1	Missed appointment > 6 weeks	Telephone calls, if unsuccessful home visit	1631	267	267
7	Deribe et al 2008	2005-2007	Jimma, Ethiopia	Urban	Public	Adult	1	Missed >2 appointments	Telephone calls and home visits	1796	161	173
8	Geng et al 2011	2006-2007	Mbarara, Uganda	Rural	Public	Adult	1	No visit > 6 months	Home visit	3628	829	128
											(22.9)	(15.4)
9	□ Gunguwo et al 2012	2010	Bulawayo, Zimbabwe	Urban	Public	Adult	1	No visit > 3 months	Home visit	1796	161	161
10	□ Kato et al 2013	2010	Mumbwa district, Zambia	Rural	Public	NR	> 2	Not defined	Home visit	352 ^Δ	53	53
											(15.1)	(10.0)

1	Krebs et al 2008	2005	Lusa- ka, Zam- bia	Ur- ban	Pub- lic	NR	12	Missed ap- pointment 1 week to 1 month (fa- cility de- pendent)	Tele- phone calls and home visits	1619 8	34 08 (21 .0)	654 (19. 2)
1	Maske w et al 2007	2006- 2007	Johanne- sburg, South Africa	Ur- ban	Pub- lic	NR	1	Missed ap- pointment > 1 month	Tele- phone call	5821	15 4 (2. 7)	154 (10 0)
1	Mben et al 2012	2006- 2007	Ya- ounde, Came- reroon	Ur- ban	Pub- lic	NR	1	Missed ap- pointment > 1 month	3 at- tempts made to trace patient (meth- ods NR)	NR	NR	NR
1	McGuir e et al 2010	2004- 2007	Chirad- zulu, Mala- wi	Ru- ral	Pub- lic	Adult/ Paedi- atric [¥]	11	Missed ap- pointment > 1 month	1-3 home visits	1063 30	11 86 (11 .2)	118 6 (10 0)
1	Miller et al 2010	2008- 2009	Lim- popo and Gaut- eng, South Africa	Ru- ral & Ur- ban	Pub- lic	Adult	2	Missed ap- pointment > 1 month	Tele- phone calls, if unsuc- cessful home visit	528	40 (7. 6)	40 (10 0)
1	Muteve dzi et al 2013	2004- 2012	Hlabisa, South Africa	Ru- ral	Pub- lic	Adult	17	No visit >6 months	Tele- phone calls and home visits [¤]	4674	55 8 (11 .9)	558 (10 0)
1	O'Conn or et al 2011	2007- 2009	Johanne- sburg, South Africa	Ur- ban	Pub- lic	NR	4	Missed ap- pointment at down re- ferral site > 6 weeks	3 tele- phone call at- tempts, if unsuc- cessful home	3336	49 0 (14 .7)	490 (10 0)

visit													
1	□ 8	Omotoso et al 2011	2008-2010	Ada-mawa state, Nigeria	Ru-ral	Pub-lic	NR	5	Missed ap-pointment > 3 months	Home visit	2350	38	185 (48. (16 .2)
1	9	Onoka et al 2012	2007	Enugu state, Nigeria	Ru-ral & Ur-ban	Pub-lic & Pri-vate	NR	2	Missed 3 appoint-ments	Tele- phone calls and home visits	1034	21	219 (10 (21 .2)
2	0	Peltzer et al 2011	2007-2008	Uthukela dis-trict, South Africa	Ru-ral & Ur-ban	Pub-lic	Adult	3	Missed 2 consecu-tive or 6/12m ap-pointment	5 tele-phone call attempts, if unsuc-cessful up to 3 home visits	727	16	169 (10 (23 .3)
2	1	Rosen & Ketlhap ile 2010	2004-2009	Johanne sburg, South Africa	Ur-ban	Pub-lic	Adult	1	Missed ap-pointment > 1 month	1-8 Tel-ephone calls	1167	86	493 □ (7. 4) (56. 8)
2	2	Saka et al 2013	2008-2011	Togo	Ru-ral & Ur-ban	Pub-lic & Pri-vate & NG O	Adult	28	No visit >4 months	Tele- phone calls	1661	12	121 6 (7. 3) (10 0)
2	3	□ Sie et al 2011	2010	Cote d'Ivoire	Ru-ral & Ur-ban	Pub-lic	NR	12	Not de-fined	Tele- phone calls	NR	42	422 1 (10 0)

2	□	2004-	Cote	Ru-	NR	138	No visit > 3	Tele-	4785	11	110
4	Toure	2011	d'Iv-	ral			months	phone	8	05	51
	et al		oire	&				calls		1	(10
	2012			Ur-							.0)
				ban	Pub					(23	
					lic					.1)	
2	Twanya	2006-	Li-	Ru-	Pub	Adult	2	Missed ap-	2137	35	351
5	et al	2010	longw	ral	lic			pointment	0	10 [‡]	0
	2013		e, Ma-	&				> 3 weeks			
			lawi	Ur-						(16	(10
				ban						.4)	.0)
2	Weigel	2002-	Li-	Ru-	Pub	Adult/	1	Missed ap-	3846	18	180
6	et al	2005	longw	ral	lic			pointment		40	0
			e, Ma-	&				> 2 weeks			
			lawi	Ur-						(47	(97.
		2011		ban						.8)	.8)
2	Wubsh	2005-	Gon-	Ru-	Pub	Adult	1	Missed ap-	3012	55	551
7	et et al	2010	dar,	ral	lic			pointment		1	(10
	2013		Ethio-					> 3 months			.0)
			pia							(18	
										.3)	
2	Yu	2005-	North	Ru-	Pub	Adult/	4	No visit for	5009	25	253
8		2006	ern	ral	lic			> 3 months		3	(10
			Mal-	&							.0)
			awi	Ur-						(5.	
				ban						1)	

□ conference abstract

NR = not reported

*Disaggregated ART data from (Alamo et al. 2012)

□ random sample of LTFU patients

◊ Corresponding author provided data not reported in publication/conference abstract (see acknowledgements)

Δ Data from conference poster download attached to conference abstract

¥ Disaggregated adult data reported for primary and secondary outcomes

¶ Abstract does not state whether ART/pre-ART cohort. Unable to contact author. Assumed ART cohort.

○ Surveillance database maintained by semi-annual household survey (Bor et al. 2013)

‡ LTFU patients less 613 formal transfers

Table 2: True outcomes of LTFU patients traced

N o.	First au- thor	No. in tracing study	No. traced (%)	No. self- transfers (%)	No. still at same ART facility (%)	No. stopped care (%)	No. alive (%)	No. died (%)
1	Alamo	164	158 (96.3)	86 (54.4)		56 (35.4)	142 (89.9)	16 (10.1)
2	Bisson	68	46 (67.7)	NR			6 (13.0)	40 (87.0)
3	Caluwaert s	594	214 (36.0)	43 (20.1)	7 (3.3)	46 (21.5)	96 (44.9)	118 (55.1)
4	Chima	343	251 (73.2)	NR			120 (47.8)	131 (52.2)
5	Dahab	95	67 (70.5)	3 (4.5)		40 (59.7)	43 (64.2)	24 (35.8)
6	Dalal	267	173 (64.8)	30 (17.3)		60 [□] (34.7)	90 (52.0)	83 (48.0)
7	Deribe	173	108 (62.4)	19 (17.6)		89 [□] (82.4)	108 (100)	NRo
8	Geng	128	111 (86.7)	35* (31.5)		13* (11.7)	79 (71.2)	32 (28.8)
9	Gunguwo	161	111 (68.9)	6 (5.4)	16 (14.4)	11 (9.9)	33 (29.7)	78 (70.3)
10	Kato	53	48 (90.6)	10 (20.8)	8 (16.7)	15 (31.3)	33 (68.8)	15 (31.3)
11	Krebs	654	417 (63.8)	NR			225 (54.0)	192 (46.0)

1	Maskew	154	70	10		41 [□]	51	19
2			(45.5)	(14.3)		(58.6)	(72.9)	(27.1)
1	Mben	NR	231	22		111 [□]	133	98
3				(9.5)		(48.1)	(57.6)	(42.4)
1	McGuire	1186	344	63		48 [□]	111	233
4			(29.0)	(18.3)		(14.0)	(32.3)	(67.7)
1	Miller	40	38	16	2	13 ^Δ	31	7
5			(95.0)	(42.1)	(5.3)	(34.2)	(81.6)	(18.4)
1	Mutevedz	558		NR			303	91
6	i		394					
			(70.6)				(76.9)	(23.1)
1	O'Connor	490	374	71	281	15	367	7
7			(76.3)	(19.0)	(75.1)	(4.0)	(98.1)	(1.9)
1	Omotoso	185	151	10		27 ^{ξΔ}	132 ^Π	19
8			(81.6)	(6.6)		(17.9)	(87.4)	(12.6)
1	Onoka	219	100	15	4	30 ^Δ	49	51
9			(45.7)	(15.0)	(4.0)	(30.0)	(49.0)	(51.0)
2	Peltzer	169	147	58		7	65	82
0			(87.0)	(39.5)		(4.8)	(44.2)	(55.8)
2	Rosen	493	260	79	56	70	205	55
1			(52.7)	(30.4)	(22.0)	(26.9)	(78.9)	(21.2)
2	Saka	1216	202	NR		NR	114	88
2			(16.6)				(56.4)	(43.6)
2	Sie	4221	1038	77		NR	907	131
3			(24.6)	(7.4)			(87.4)	(12.6)
2	Toure	11051	2294	200		NR	2104	190
4			(20.8)	(8.7)			(91.7)	(8.3)
2	Tweya	3510 [◊]	2254	121		¥	1302	952
5								

			(64.2)	(5.4)			(57.8)	(42.2)
2	Weigel 6	1800	534 (29.7)	128 (24.0)	157 (29.4)	32 (6.0)	317 (59.4)	217 (40.6)
2	Wubshet 7	551	486 (88.2)	118 (24.3)		135 (27.8)	253 (52.1)	233 (47.9)
2	Yu 8	253	185 (73.1)	20 (10.8)	1 (0.5)	37 (20.0)	58 (31.4)	127 (68.7)

† Upon tracing found patients still receiving ART at the same facility. Patient records either incorrect or patients returned to care between LTFU classification and tracing.

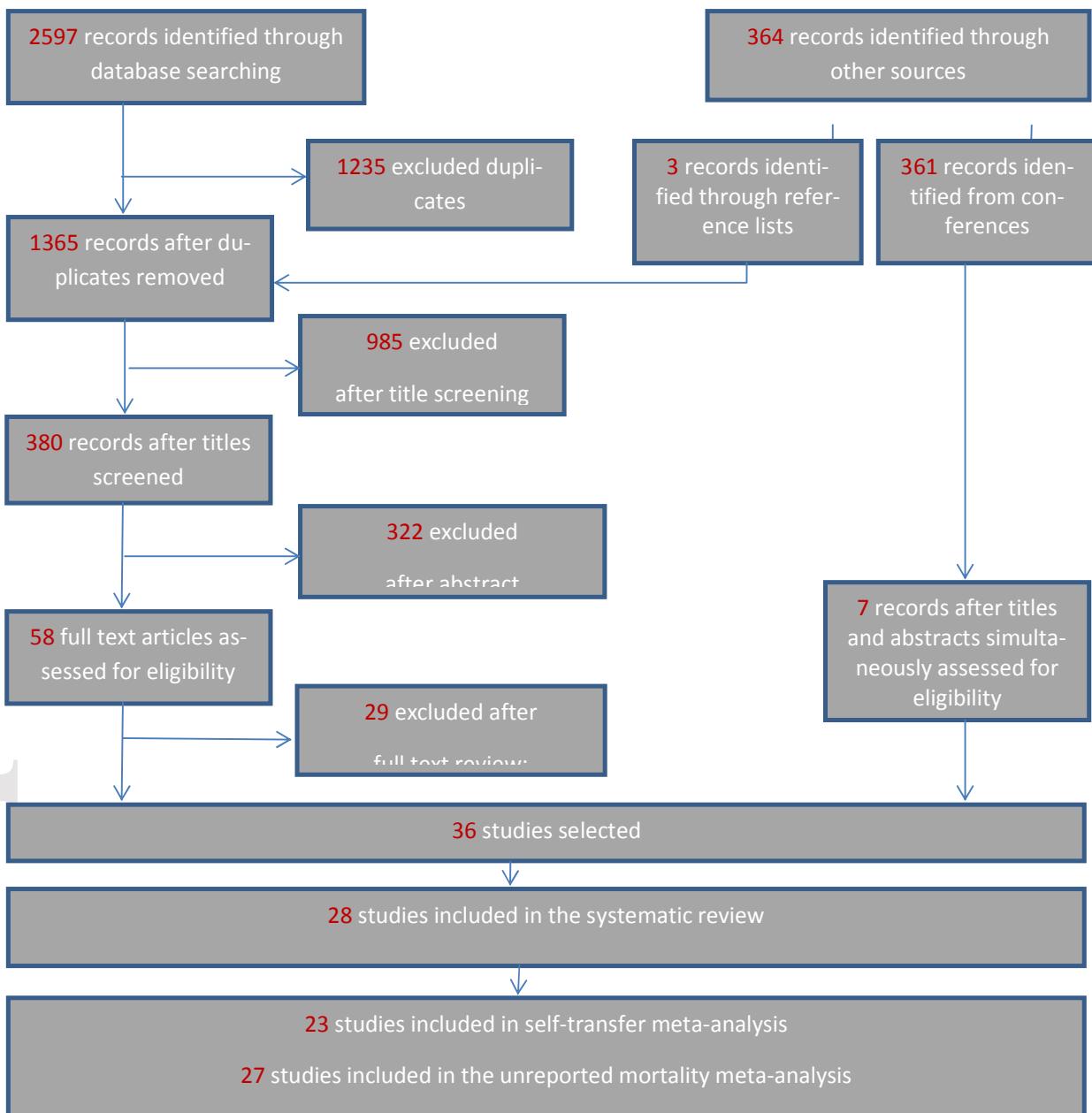
No. of patients who stopped ART not reported. Ascertained from % breakdown of reasons provided for stopping ART.

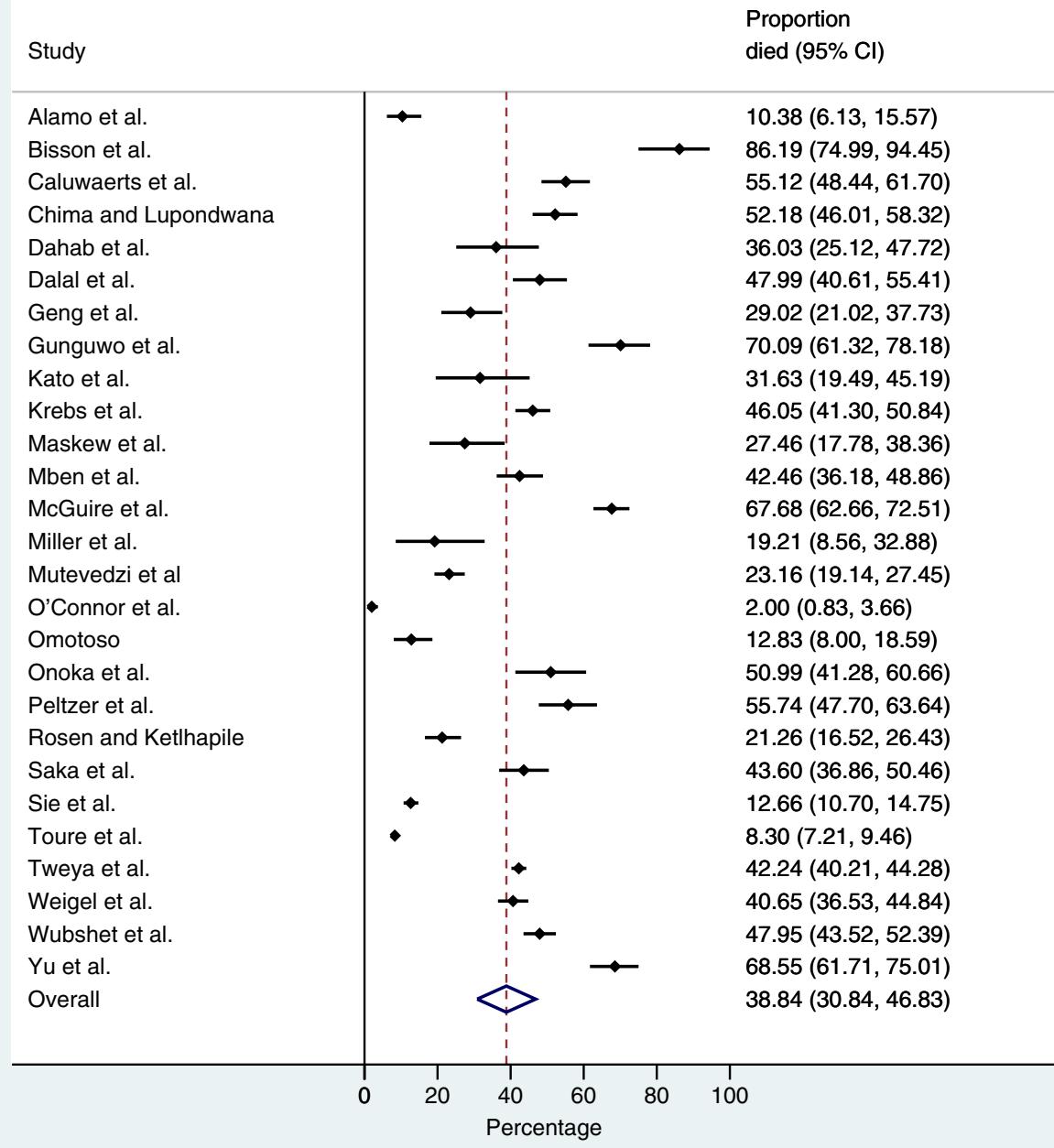
Author confirmed that deaths determined upon tracing were included in those not traced (not in reported deaths).

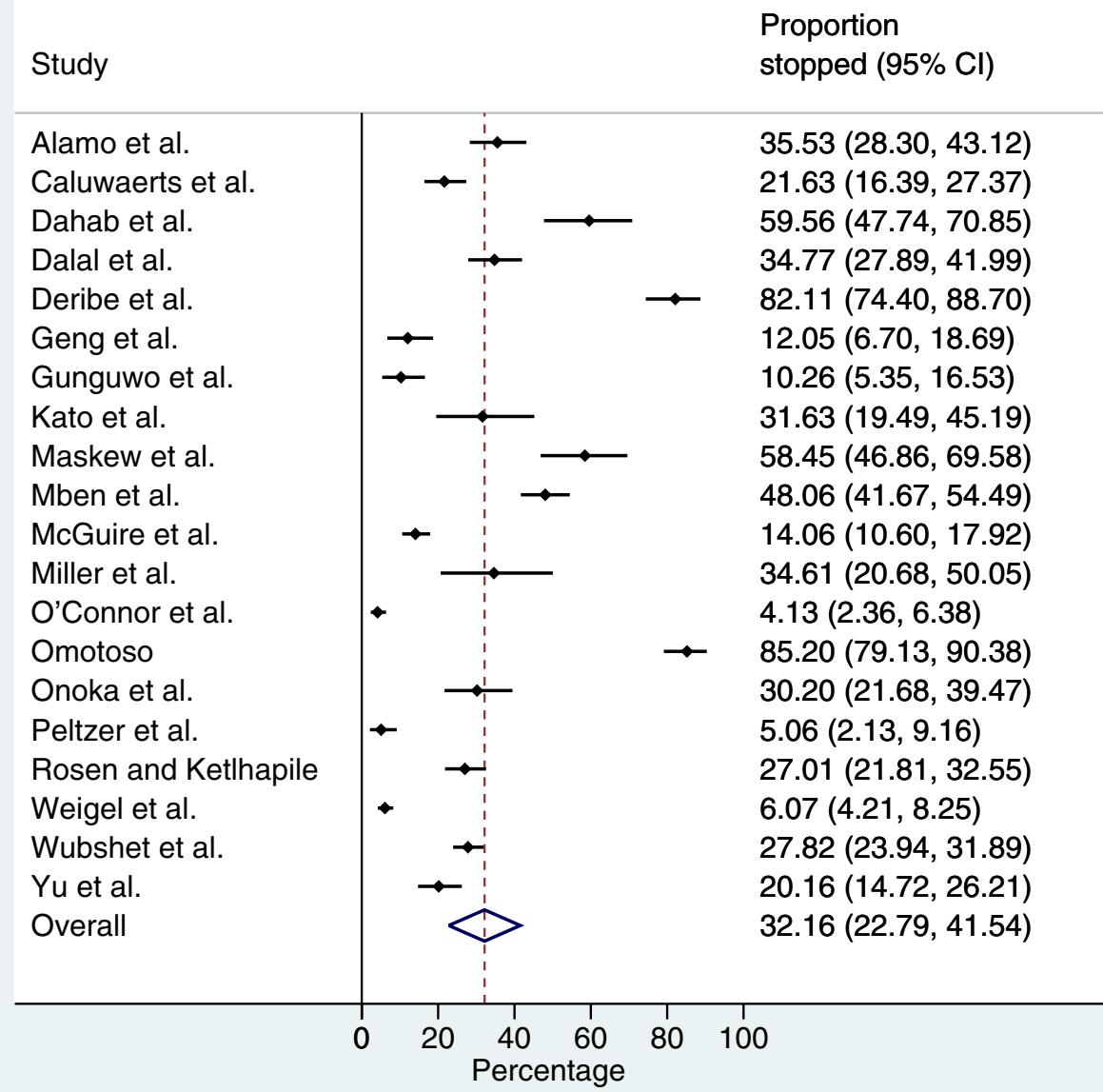
*** Only directly interviewed 48/79 patients found alive. True outcomes for remaining 31 patients unknown.**

Δ Patients who upon interviewing refused to answer/denied their HIV status have been added to those reported to have stopped ART.

ξ patients reported to have returned to care after tracing not included


¶ reported alive categories add up to 139 (more than those traced less died). Assumed alive = traced less deaths.


◊ Study reports cases traced not patients. Corresponding author provided data not reported (see acknowledgements).


¥ LTFU cases not patients that stopped ART reported.

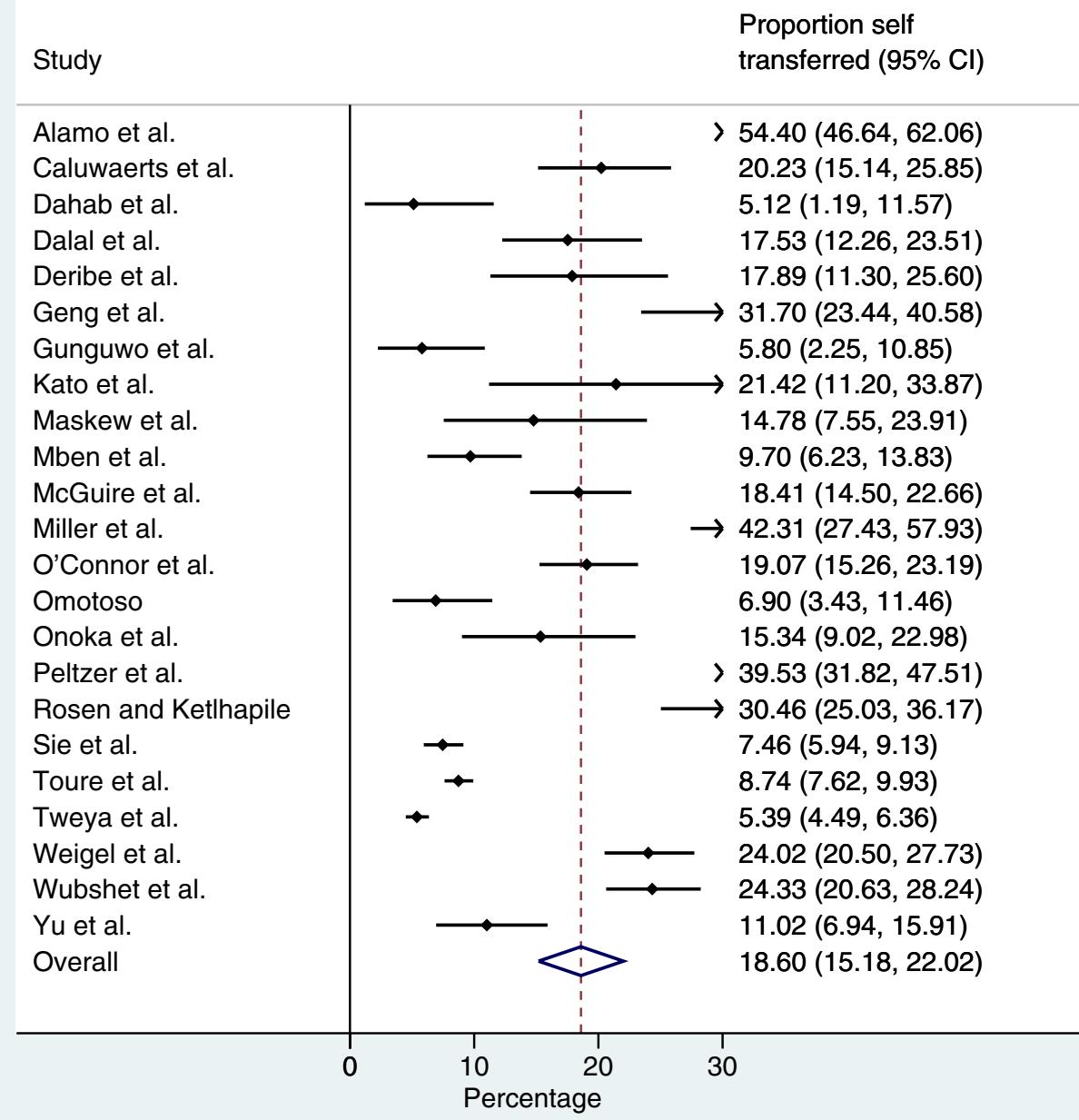

NR = not reported

Figure 1: Identification and selection of studies flow diagram

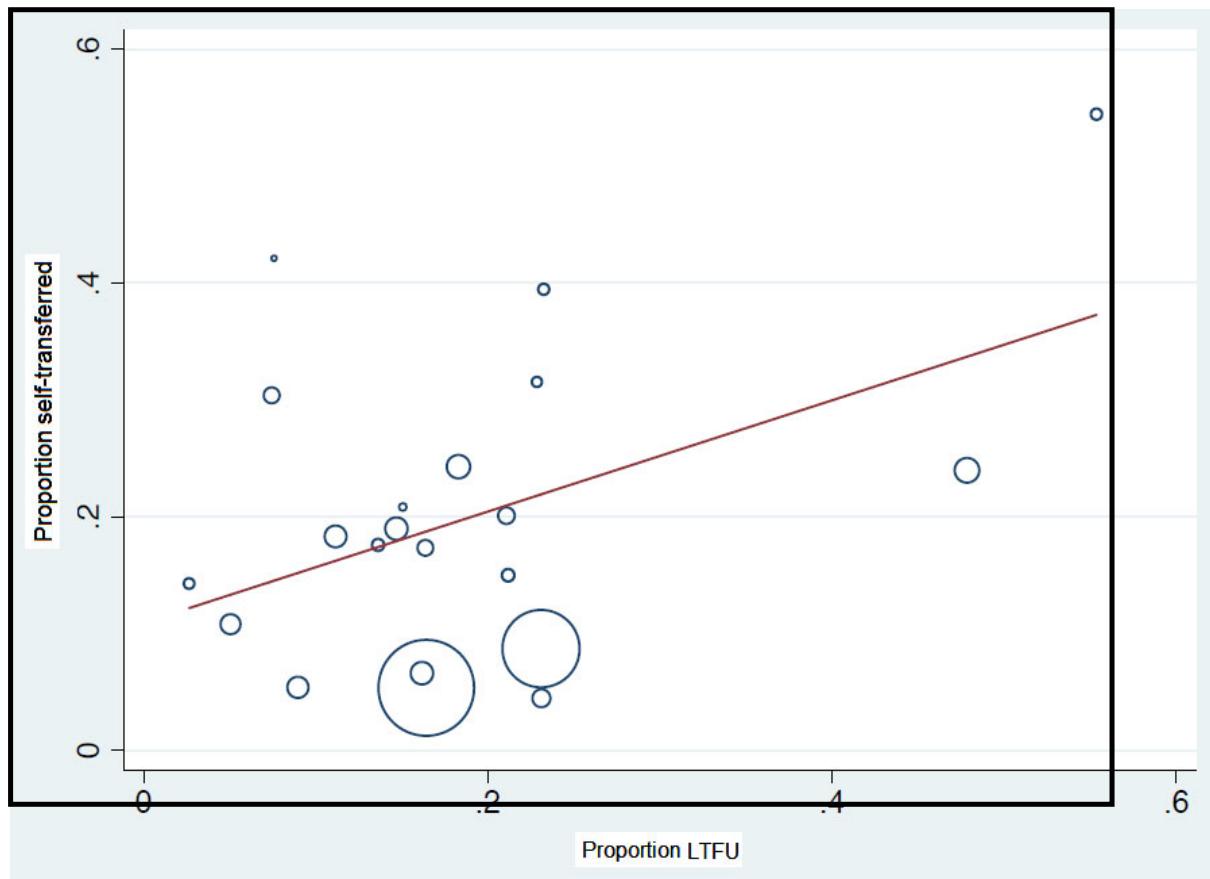


Figure 5: Meta-regression

