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ABSTRACT
Introduction  Waterborne diseases are leading concerns in 
emergencies. Humanitarian guidelines stipulate universal 
water chlorination targets, but these fail to reliably protect 
water as postdistribution chlorine decay can leave water 
vulnerable to pathogenic recontamination. The Safe 
Water Optimization Tool (SWOT) models chlorine decay to 
generate context-specific chlorination targets that ensure 
water remains protected up to point-of-consumption. 
The SWOT has not been tested in an active humanitarian 
response, so we conducted a proof-of-concept evaluation 
at a Cox’s Bazar refugee settlement to validate its 
modelling and assess its efficacy and effectiveness.
Methods  We trained the SWOT using data collected 
from July to September 2019 and evaluated using data 
from October to December 2019 (n=2221). We validated 
the SWOT’s modelling by comparing performance using 
training and testing data sets. We assessed efficacy 
using binary logistic regression comparing household 
free residual chlorine (FRC) when the SWOT target was 
delivered at tapstands versus the status quo target, and 
effectiveness using interrupted time series analysis of the 
proportion of households with protective FRC before and 
after SWOT implementation.
Results  The SWOT generated a context-specific FRC 
target of 0.85–1.05 mg/L for 15-hours protection. 
Validation of the SWOT’s process-based model showed 
R2 decreased from 0.50 to 0.23 between training and 
testing data sets, indicating periodic retraining is required. 
The SWOT’s machine-learning model predicted a 1%–9% 
probability of household FRC<0.2 mg/L at 15 hours, close 
to the observed 12% and in line with the observed 7% 
risk during baseline and endline, respectively. Households 
that collected water meeting the SWOT target were more 
likely to have sufficient protection after 15 hours compared 
with the status quo target (90% vs 35%, p<0.01), 
demonstrating the SWOT’s efficacy. The SWOT target was 
not fully implemented at tapstands, so we did not observe 
change in household FRC during endline.
Conclusion  The SWOT can generate context-specific 
chlorination targets that protect water against pathogenic 
recontamination. Improving feedback between monitoring 
and treatment would help system operators unlock the 
SWOT’s full water safety potential.

INTRODUCTION
Waterborne diseases such as hepatitis E, 
cholera and other diarrhoeal illnesses are 
among the leading causes of preventable 
mortality and morbidity in emergencies.1–3 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Status quo universal water chlorination guidelines 

(ie, Sphere) fail to reliably protect drinking water from 
pathogenic recontamination in emergency settings.

	⇒ The Safe Water Optimization Tool (SWOT, www.safeh2o.
app) models postdistribution chlorine decay to gen-
erate context-specific, data-driven water chlorination 
targets that protect water up to the household point-
of-consumption—where it actually matters for public 
health.

	⇒ The SWOT has been demonstrated on existing water 
quality data sets from refugee settlements globally, but it 
is unknown if it can work during an active humanitarian 
response.

WHAT THIS STUDY ADDS
	⇒ We demonstrate that the SWOT can generate a 
context-specific water chlorination target using 
routinely collected water quality data from an active 
humanitarian response at the Kutupalong-Balukhali 
refugee settlement in Cox’s Bazar, Bangladesh.

	⇒ We show that the SWOT is highly efficacious: house-
holds collecting water at tapstands meeting the 
SWOT chlorination target were nearly three times 
more likely to have sufficient chlorine protection 
compared with the status quo target.

	⇒ Challenges with implementing the SWOT target 
consistently at tapstands can limit improvements in 
household water safety outcomes.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ The SWOT can help improve water safety in human-
itarian emergencies, however, additional support 
must be provided to water system operators to im-
prove feedback between monitoring and treatment 
operations to unlock its full water safety potential.

B
M

J G
lobal H

ealth: first published as 10.1136/bm
jgh-2024-018631 on 20 A

ugust 2025. D
ow

nloaded from
 https://gh.bm

j.com
 on 25 A

ugust 2025 by guest.
P

rotected by copyright, including for uses related to text and data m
ining, A

I training, and sim
ilar technologies.

http://gh.bmj.com/
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjgh-2024-018631&domain=pdf&date_stamp=2025-08-14
http://orcid.org/0000-0001-6056-4746
http://orcid.org/0009-0005-2760-2030
https://doi.org/10.1136/bmjgh-2024-018631
https://doi.org/10.1136/bmjgh-2024-018631
www.safeh2o.app
www.safeh2o.app


2 Ali SI, et al. BMJ Glob Health 2025;10:e018631. doi:10.1136/bmjgh-2024-018631

BMJ Global Health

Ensuring water is free from waterborne pathogens is 
essential for protecting public health. Chlorination is 
widely used for water treatment in emergencies as it is 
inexpensive, simple and because it provides residual 
protection against pathogenic recontamination.4–8 
Ensuring that treated water has at least 0.2 mg/L of free 
residual chlorine (FRC) is generally sufficient to keep 
water protected against pathogenic recontamination.4 5 
The Sphere Handbook, which lays out minimum stand-
ards for humanitarian response, stipulates a universal 
FRC target of 0.2–0.5 mg/L in chlorinated water supplies 
at water distribution points (ie, tapstands),6 a target 
which has been adopted in many humanitarian sector 
guidelines.7 8

This universal FRC target, however, derives from the 
WHO Guidelines for Drinking-Water Quality (GDWQ), 
which are based on conventions for piped water systems 
in cities.9 The US CDC notes that this universal FRC 
target is appropriate only when users drink water 
directly from taps of a piped system.10 It is unlikely to 
provide sufficient residual protection if the point-of-
consumption is spatially and temporally distant from 
the point-of-distribution, which is commonly the case in 
refugee and internally displaced persons (IDP) settle-
ments. As a consequence, this universal FRC target fails 
to reliably ensure that water remains protected against 
pathogenic recontamination up to the household point-
of-consumption in these settings.11 12 Multiple studies in 
refugee and IDP settlements show that treated water is 
often recontaminated after distribution, contributing 
to the spread of waterborne diseases.13–16 Poor environ-
mental hygiene conditions—arising due to limited water 
availability, inadequate sanitation and other factors—
provide ample opportunities for pathogenic recontami-
nation of water to occur once residual chlorine decays 
and the protection it offers dissipates during the post-
distribution period, through collection, transport to 
households and multiple hours of household storage and 
use.11 12 17

To protect public health in refugee and IDP settle-
ments, humanitarian responders need water chlori-
nation targets that ensure water is protected against 
pathogenic recontamination up to the household point-
of-consumption. Chlorine decay is a context-specific 
process,12 17–19 so determining the required FRC at the 
point-of-distribution that ensures protective residual of 
≥0.2 mg/L FRC persists until the last cup is consumed in 
the household must be determined on a context-specific 
basis. The Safe Water Optimization Tool (SWOT, www.​
safeh2o.app) is a novel water quality modelling platform 
that meets this need. The SWOT harnesses routine moni-
toring data to model postdistribution chlorine decay and 
generate data-driven, context-specific water chlorination 
targets that optimise the probability of residual chlo-
rine protection lasting the entire duration of household 
storage and use.

The SWOT implements novel process-based and 
machine-learning models developed using water quality 

data sets from refugee settlements in South Sudan, 
Jordan and Rwanda.12 17 20 These models are trained 
with local water quality monitoring data and outputs 
are integrated to generate context-specific FRC targets. 
The SWOT’s process-based model determines chlo-
rine decay behaviour using an empirical power-decay 
model and establishes the initial tapstand FRC needed 
to achieve the desired residual at the household point-
of-consumption.12 The SWOT’s machine-learning model 
applies a probabilistic artificial neural network ensemble 
forecasting system (ANN-EFS) to forecast the probability 
of having the desired residual at the household point-of-
consumption under various scenarios,17 20 which is then 
used to refine the context-specific FRC target.

The SWOT has the potential to help humanitarian 
responders ensure water safety and protect public health 
in refugee and IDP settlements during humanitarian 
emergencies; however, it has not yet been tested in an 
active humanitarian response situation. To address this 
gap, we carried out a proof-of-concept evaluation of the 
SWOT during an active humanitarian response at the 
Kutupalong-Balukhali refugee settlement in Cox’s Bazar, 
Bangladesh. The evaluation was structured around three 
objectives:
1.	 Model validation: we conducted model validation as part 

of training the SWOT’s process-based and machine-
learning models to confirm whether the SWOT can 
generate a context-specific chlorination target when 
presented with new water quality data from an active 
humanitarian response.

2.	 Efficacy evaluation: we assessed whether the SWOT 
chlorination target, when implemented at water dis-
tribution points, would increase the proportion of 
households with protective chlorine residual in stored 
water after the typical duration of household storage 
and use at the site, compared with the status quo uni-
versal FRC target.

3.	 Effectiveness evaluation: we assessed whether the propor-
tion of households with protective chlorine residual in 
stored water after the typical duration of household 
storage and use improved after SWOT implementa-
tion at Kutupalong-Balukhali, and the factors that in-
fluenced implementation and outcomes.

The findings reported in this paper can help improve 
best practices for safe water supply in refugee and IDP 
settlements and help protect public health during 
humanitarian emergencies.

METHODS
Study design
We evaluated how the SWOT affected water quality at 
Camp 1 of the Kutupalong-Balukhali refugee settle-
ment over a 6 month period (July–December) in 2019. 
We trained the SWOT’s models using water quality 
data collected at the settlement over the first 3 months 
(July–September) to generate a context-specific chlo-
rination target. This target was provided to the local 
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implementing partner, Médecins Sans Frontières (MSF), 
who sought to achieve this FRC target at tapstands over 
the next 3 months, while we continued to collect data to 
evaluate the efficacy of the SWOT chlorination target and 
the effectiveness of the overall intervention. For both effi-
cacy and effectiveness evaluations, the primary outcome 
of interest was having a protective residual of ≥0.2 mg/L 
FRC in stored water after the typical duration of house-
hold storage at the site. This 0.2 mg/L FRC threshold has 
been shown to perform reasonably well as a surrogate for 
the absence of faecal indicators and enteric pathogens in 
a variety of contexts.4 5 13 21 22 We evaluated efficacy based 
on the proportion of households having ≥0.2 mg/L FRC 
in stored water when the SWOT chlorination target was 
delivered at water distribution points versus when the 
status quo universal FRC target (ie, 0.2–0.5 mg/L) was 
delivered at tapstands. We evaluated the effectiveness of 
the SWOT intervention using an interrupted time series 
(ITS) analysis to assess how the trend in household FRC 
≥0.2 mg/L changed after the SWOT chlorination target 
was provided to the implementing partner.

Site background
At the time of the study, Kutupalong-Balukhali hosted over 
600 000 Rohingya refugees who had fled state violence 
in Myanmar. The rapid influx of people, combined with 
high population densities and challenging environ-
mental conditions, produced an acute water, sanitation 
and hygiene (WASH) crisis with significant burden of 
waterborne disease in the community.23 Poor sanitation 
contributed to widespread faecal contamination of water 
supplies both at sources (including deep boreholes) and 
in households. In response, multiple water chlorination 
activities were initiated throughout the refugee settle-
ment to ensure drinking water safety.24 The water system 
at Camp 1 was built by MSF and served 83 000 people at 
the time of the study (online supplemental figure S1). 
This system comprised 10 independent subnetworks, 
supplied by 14 deep boreholes equipped with hybrid 
diesel-solar submersible pumps. Water was abstracted 
from a deep aquifer and chlorinated using high-test 
calcium hypochlorite via inline chlorinators (no other 
treatment). Water was distributed via pipelines from 
elevated reservoirs to 190 tapstands around Camp 1.

Data collection
Data collection was structured to serve two purposes. 
A smaller set of water quality parameters was collected 
at points-of-distribution (tapstands) and points-of-
consumption (households) to train and validate the 
SWOT’s process-based and machine-learning models, 
and a larger set of potential covariates was collected at 
tapstands and households for the efficacy and effective-
ness evaluations. These two sets of data were collected 
through a combined survey instrument that included 
questions relating to water quality, water handling behav-
iours and other factors. We systematically sampled all 
tapstands across Camp 1 (n=190); a few tapstands were 

not included due to inaccessibility or non-functionality 
during the study period (n=13).

Data for model training and validation
To train and validate the SWOT’s process-based and 
machine-learning models, paired water quality samples 
were collected at tapstands and households. At tapstands, 
we measured FRC, electrical conductivity (EC) and water 
temperature. We randomly approached water-users 
after they filled their water containers at the tapstand to 
request their participation in the study. If they consented, 
we accompanied the enrolled participant back to their 
household where we marked the container of collected 
water. We returned to the household several hours later 
to measure FRC from the marked container again. Each 
sample therefore consisted of paired FRC measurements 
from the tapstand and the household; EC and water 
temperature measurements at the tapstand and elapsed 
time between tapstand and household measurements. To 
capture the range of typical water storage durations at 
the site, we alternated between starting paired samples at 
tapstands in the morning and following up at households 
the same afternoon (approximately 6–8 hours elapsed 
time) and starting tapstand samples in the afternoon 
and following-up at the household the next morning 
(approximately 16–18 hours elapsed time). We measured 
FRC using PTH 7091 compact chlorometers (Palintest, 
Tyne & Wear, UK) and measured EC and water temper-
ature using HI 98129 multimetres (Hanna Instruments, 
Woonsocket, RI, USA). Equipment was calibrated using 
manufacturer standards after every 1–2 days of use.

Data for efficacy and effectiveness evaluations
The primary outcome of interest for evaluating the 
SWOT’s efficacy and effectiveness was household 
FRC≥0.2 mg/L; household FRC data were included as 
part of the model training and validation data collection 
described above. However, factors other than the SWOT 
can also influence household FRC. To control for these 
factors in the efficacy and effectiveness evaluations, we 
mapped them out using a directed acyclic graph (DAG) 
and, from this, collected data on as many as were feasible 
in the humanitarian setting in which we were working. 
The DAG in figure 1 illustrates the pathway by which the 
SWOT intervention improves household water safety: 
the SWOT generates a tapstand FRC target, this target 
is implemented at tapstands and after postdistribution 
chlorine decay, households should still have sufficient 
FRC to prevent pathogenic recontamination. The DAG 
also maps out potential confounders and covariates that 
also influence household FRC. These can be organ-
ised into two broad groups. The first group includes 
factors that affect postdistribution chlorine decay, which 
mediates the likelihood of having FRC≥0.2 mg/L at 
the household point-of-consumption. Postdistribution 
chlorine decay is a complex phenomenon that is influ-
enced by numerous known and unknown factors, the 
former of which may include water handling practices, 
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recontamination events, air temperature and tapstand 
water quality. The second group includes factors that 
affect tapstand FRC and may lead to the SWOT target 
not being consistently achieved across tapstands in the 
community, such as location (ie, network, borehole and 
tapstand) and time of collection (ie, AM or PM collection 
from tapstands) (further explanation of these factors is 
provided in online supplemental appendix S1). Based 
on the DAG, we collected data on water handling behav-
iours (ie, container type, container covering and clean-
liness during collection and storage, drawing method), 
additional tapstand water quality parameters including 
turbidity using PTH 092 turbidimeters (Palintest, Tyne 
& Wear, UK) and pH using HI 98129 multimetres, air 
temperature, water network ID, tapstand ID and time 
of collection. We were not able to gather data on source 
water quality, environmental hygiene or recontamina-
tion events, as these were not feasible to consistently 
monitor in this setting, and publicly available data on 
WASH service levels25 did not include sufficient detail to 
identify changes over the 6 month period of the evalua-
tion. Finally, while some relationships in the DAG were 
well defined, others were hypothetical. In these cases 
(shown in figure 1 with dashed lines), we used statistical 
tests to determine if a relationship existed in the data we 
collected, using the Kruskal-Wallis test for continuous 

outcome variables and the χ2 test for binary or categor-
ical outcome variables. Statistical tests and models were 
conducted in Python V.3.7,26 using the SciPy package27 
and Statsmodel package28 and considered differences 
significant at p<0.05.

Patient and public involvement
Patients and the public were not involved in the design, 
conduct, reporting or dissemination plans for this 
research.

Data analysis
Model validation
The SWOT is one of the first operations-level deploy-
ments of a machine-learning technology in the human-
itarian WASH sector. Model validation—the process of 
testing on independent, unseen data—is a critical step 
in the ethical development of machine-learning tools 
for humanitarian response, as a major ethical concern 
is the potential for making faulty decisions based on an 
erroneous sense of accuracy.29 Therefore, we conducted 
model validation as part of training the SWOT’s models 
to confirm whether the SWOT can generate a reliable 
and accurate context-specific chlorination target during 
an active humanitarian response.

Figure 1  Directed acyclic graph identifying factors that could potentially influence household FRC in a typical refugee 
settlement water system. EC, electrical conductivity; FRC, free residual chlorine; SWOT, Safe Water Optimization Tool.
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To validate models, we trained the SWOT using the first 
3 months of data collected at Kutupalong-Balukhali and 
then tested it using the next 3 months as an independent 
validation set. We validated the process-based model by 
assessing the goodness-of-fit with the training and testing 
data using the coefficient of determination (R2). For the 
machine-learning model, we compared the predicted 
probability of having household FRC≥0.2 mg/L with the 
SWOT chlorination target delivered at the tapstands to 
the observed probability in households that collected 
water at tapstands meeting the SWOT target.

Efficacy evaluation
The efficacy evaluation sought to determine whether the 
context-specific SWOT chlorination target, when imple-
mented at tapstands, would increase the proportion of 
households with FRC≥0.2 mg/L after the typical duration 
of household storage and use at the site, compared with 
the status quo universal FRC target. To do this, we used 
a binary logistic regression model with a binary outcome 
variable set to 1 if a household had FRC≥0.2 mg/L at 
follow-up, or 0 if not. The treatment variable was a 
binary dummy variable based on whether the tapstand 
FRC was in line with the context-specific SWOT target 
or the status quo universal FRC target. To control for 
external factors that may also influence household 
FRC, we included exogenous variables from the DAG 
(figure  1) in the model. To ensure model parsimony, 
we first assessed the validity of proposed relationships in 
the DAG and eliminated variables for which a significant 
relationship was not observed. We then assessed which 
of the validated covariates differed significantly between 
comparator groups in the efficacy evaluation (ie, house-
holds receiving the context-specific SWOT target or the 
status quo FRC target at tapstands). To assess significance 
in both steps, we used the Kruskal-Wallis test for contin-
uous variables and the χ2 test for binary variables, with 
differences considered significant at p<0.05. The deter-
mination of which exogenous variables to include in the 
efficacy evaluation is detailed in online supplemental 
appendix S2.

Effectiveness evaluation
The effectiveness evaluation sought to assess whether 
the proportion of households with protective chlorine 
residual in stored water after the typical duration of 
household storage and use at the site improved after 
SWOT implementation. To do this, we conducted an 
ITS analysis in which we used a multiple linear regres-
sion model with the proportion of households with ≥0.2 
mg/L FRC at follow-up as the outcome variable. We 
conducted a slope change analysis30 by including a dummy 
variable of days since the start of the evaluation period 
(October 1) to track how household FRC changed over 
time following the SWOT intervention. We took this slope 
change approach because we assumed that improve-
ments in household water safety would be gradual after 
the implementing partner received the SWOT target, as 

operators iteratively adjusted chlorination to achieve the 
SWOT FRC target at tapstands. We controlled for poten-
tial increases in household FRC over time as operators 
improved their ability to manage chlorination in the 
piped system (separate from the SWOT intervention) 
using a second dummy variable for days since the start of 
the study (July 1). This ensured that any improvements 
attributed to the SWOT were due to operators achieving 
the SWOT target, rather than overall improvements 
in operational control. Additionally, we controlled for 
external factors that could influence household FRC 
identified in the DAG in figure  1. As with the efficacy 
evaluation, we only included variables which had vali-
dated relationships and which were significantly different 
between the two comparator groups (ie, pre-SWOT and 
post-SWOT intervention). The determination of which 
exogenous variables to include in the effectiveness evalu-
ation is summarised in online supplemental appendix S2.

RESULTS
Water quality summary
We collected 2221 paired water quality and water handling 
observations at the study site.31 After data cleaning to 
remove erroneous measurements and/or inadmissible 
data prior to analysis (see online supplemental appendix 
S3 for details), 2094 observations remained. Many of the 
remaining paired samples were missing one or more non-
FRC water quality measurements, including turbidity 
(n=90), water temperature (n=611), EC (n=1196) and/
or pH (n=1382). This restricted the data available for the 
ANN-EFS and the ITS model (cf, effectiveness evaluation 
section below), which both included pH, EC and water 
temperature as covariates. Figure 2 shows the daily distri-
bution of FRC concentrations, as well as the whole-data 
set distributions of elapsed time and other water quality 
parameters. Further chemical water quality data from the 
Camp 1 boreholes are discussed in online supplemental 
appendix S4.

Figure  2 shows that household FRC tends to be 
lower than tapstand FRC, which we confirmed using a 
Kruskal-Wallis test of the monthly median tapstand and 
household FRC concentrations (online supplemental 
table S1). On a monthly basis, median tapstand FRC 
was consistently higher than median household FRC by 
nearly a factor of two, and this difference was statistically 
significant (p<0.05). The significant FRC loss observed 
between tapstands and households underscores the need 
for FRC targets that account for postdistribution chlorine 
decay. Online supplemental figure S2 provides additional 
detail on the change in FRC from tapstand to household, 
and the FRC loss rate (ie, change in FRC normalised by 
elapsed time) categorised by time of collection (AM/
PM) and month of data collection.

SWOT chlorination target generation
Using data from the first 3 months (n=899), we trained 
the SWOT and produced a tapstand FRC target of 
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0.95 mg/L for 15-hours protection, representing the 
longest typical duration of household storage and use 
identified in a knowledge, attitudes and practices (KAP) 
survey conducted in parallel to this study (summarised 
in online supplemental appendix S5). Since achieving 
a discrete point target is challenging for operators, we 
provided a ±0.1 mg/L range around the target to provide 
water system operators with a practicable range of 0.85–
1.05 mg/L. The ANN-EFS risk assessment of this target 
range under different times of collection and water 
quality scenarios indicated that the risk of household 
FRC being <0.2 mg/L ranged from 0.01 (1%) to 0.09 
(9%) (online supplemental figure S3 and table S2). This 
level of risk was deemed acceptable, and we provided the 
SWOT tapstand FRC target recommendation of 0.85–
1.05 mg/L to the water system operators at Camp 1 at the 
start of October 2019 to implement for the second half of 
the study (October–December 2019).

Model validation
The process-based model was trained using baseline data 
(July–September 2019), which identified optimal (best 
fit) parameters for the power-decay model of decay rate, 
k=0.052, and rate order, n=0.65, and maximum decay 
(worst case) parameters of k=0.059 and n=0.56. The latter 
model achieved an R2 of 0.50 (moderately good per 
Moriasi et al32) during training and 0.23 for the testing 
period (below satisfactory per Moriasi et al32). While the 
R2 remained positive during both periods, the perfor-
mance of the process-based model degraded during the 
testing period compared with the training period.

While decay model parameters may have been overfit 
to the training data, the effect it had on the FRC target 
recommendation appeared to be limited. The machine-
learning model predicted that delivering the SWOT 

tapstand FRC target of 0.85–1.05 mg/L would yield a 
risk of household FRC being <0.2 mg/L after 15 hours 
of between 1% and 9%. During the training period, the 
observed household risk of FRC being <0.2 mg/L after 
15 hours was 12% (15/118) and during the evaluation 
period, 7% (13/182). This indicates that the probabilistic 
machine-learning model fairly accurately predicted the 
risk of household FRC being <0.2 mg/L during both the 
training period and the testing period, demonstrating 
the validity of the trained model on unseen data.

Efficacy evaluation
We evaluated the efficacy of the SWOT chlorination 
target by comparing the proportion of households with 
FRC≥0.2 mg/L at follow-up among those that received 
the SWOT target (0.85–1.05 mg/L) at the tapstand 
versus those that received the status quo universal target 
(0.2–0.5 mg/L). Across the full data set, 502 received 
the status quo universal target at the tapstand and 300 
received the SWOT target, with the remaining samples 
falling outside of either range. We compared these two 
groups using a binary logistic regression model with a 
dummy variable for the tapstand FRC target received. 
We also included exogenous variables identified by the 
DAG that were validated and shown to be significantly 
different between the SWOT and status quo universal 
target comparator groups. Table  1 summarises the 
regression coefficients and p values from this binary 
logistic regression model. Households that collected 
water with tapstand FRC in line with the SWOT target 
had ≥0.2 mg/L FRC at the point-of-consumption much 
more frequently (91%, 272/300) than households that 
collected water with tapstand FRC in line with the status 
quo universal FRC target (35%, 177/502) (p<0.01), even 
when accounting for significant variations in household 

Figure 2  Distributions of point-of-distribution (tapstand) and point-of-consumption (household) FRC concentrations (top): 
blue lines show the median, boxes show the IQR, and whiskers show the 90th percentile range. Histograms of household 
storage duration and other water quality parameters summarising the whole data set (bottom). Due to incorrect measurements 
and outliers, observations with water temperature above 48°C and turbidity above 5 NTU were removed from the figures. FRC, 
free residual chlorine; NTU, nephelometric turbidity units.

B
M

J G
lobal H

ealth: first published as 10.1136/bm
jgh-2024-018631 on 20 A

ugust 2025. D
ow

nloaded from
 https://gh.bm

j.com
 on 25 A

ugust 2025 by guest.
P

rotected by copyright, including for uses related to text and data m
ining, A

I training, and sim
ilar technologies.

https://dx.doi.org/10.1136/bmjgh-2024-018631
https://dx.doi.org/10.1136/bmjgh-2024-018631


Ali SI, et al. BMJ Glob Health 2025;10:e018631. doi:10.1136/bmjgh-2024-018631 7

BMJ Global Health

FRC linked to validated covariates of water networks and 
water drawing method. This indicates that the SWOT 
FRC target had greater efficacy for ensuring household 
FRC than the status quo universal FRC target.

Effectiveness evaluation
We used an ITS analysis to assess if the SWOT interven-
tion had an effect on household FRC between baseline 
and endline periods, distinct from the overall trend 
on how household FRC was changing over time, while 
controlling for validated covariates that varied signifi-
cantly between preintervention and postintervention 
periods. The regression coefficients and p values from 
the ITS model are presented in table  2. There was no 
significant effect observed either from the start of the 
study (July) or from the start of the SWOT interven-
tion (October), indicating that household FRC did not 
increase over time either because of water system opera-
tors improving control of the system, or as a result of the 
SWOT intervention. In fact, no variable was significantly 
associated with variations in household FRC in the ITS 
model.

Based on these findings, we conducted a second ITS 
analysis, this time using tapstand FRC as the outcome 
variable, and only including exogenous variables related 
to tapstand FRC (a simplified DAG for this revised anal-
ysis is presented in online supplemental appendix S6), 
to evaluate if the SWOT intervention had an effect on 
tapstand FRC, if not household FRC (table  3). From 
table  3, we observe that there were significant differ-
ences in tapstand FRC between some networks; however, 
we see no significant changes in tapstand FRC either 
from the start of the study (July) or from the start of the 
SWOT intervention (October). This explains the lack of 
effect on household FRC as the SWOT intervention did 
not have the desired effect of modifying tapstand FRC. 
This indicates that potential improvements to house-
hold FRC achievable through the SWOT, if the targets 

were implemented at the tapstand (as demonstrated in 
the efficacy evaluation), were not achieved at Camp 1 
because chlorination system operations did not change 
enough to produce a significant change in tapstand FRC.

DISCUSSION
The magnitude and variation in chlorine decay between 
point-of-distribution and point-of-consumption shown in 
figure 2 demonstrates the need for the SWOT’s context-
specific, data-driven chlorination targets. The SWOT’s 
process-based and machine-learning models implicitly 
capture the combined effect of all factors driving chlorine 
decay between distribution and consumption through 
relationships in paired data. Model validation of the 
SWOT’s process-based model showed that it was moder-
ately good at modelling postdistribution decay when 
presented with new data from an active humanitarian 
response site (R2=0.50 with training data). Performance 
of the trained model, however, declined during the post-
implementation period (R2=0.23 with testing data), indi-
cating that the external validity of a trained model dimin-
ishes over time as site conditions change, suggesting that 
periodic retraining at least every 3 months is needed to 
ensure that the process-based modelling is reflective 
of latest conditions. Despite the decline in R2 of the 

Table 1  Regression coefficients and p values for the binary 
logistic regression model for the efficacy evaluation

Variable Coefficient P value

Tapstand FRC in line with SWOT 
target (vs status quo universal 
FRC target)

2.0 3.5×10–21

Water drawing by scooping (vs 
pouring)

−0.62 0.00013

Network 2 −1.0 0.00014

Network 3 0.27 0.47

Network 4 −0.74 0.018

Network 8 −0.65 0.014

Network 9 −1.8 2.7×10–13

Network 10 0.48 0.057

Bolded variables were significant at a p value of 0.05.
FRC, free residual chlorine; SWOT, Safe Water Optimization Tool.

Table 2  Regression coefficients and p values for the ITS 
regression model in the effectiveness evaluation

Variable Coefficient P value

Time from start of study (July) 0.017 0.31

Time from start of SWOT 
intervention (October)

−0.0082 0.84

Tapstand water temperature 0.073 0.90

Tapstand EC −0.0069 0.48

Tapstand air temperature 0.19 0.56

Tapstand pH 0.58 0.51

Collection container covered (vs 
uncovered)

0.71 0.82

Collection container clean (vs 
unclean)

−5.0 0.41

Household container type 0.93 0.87

Same collection and household 
container

0.32 0.93

Water drawing by scooping (vs 
pouring)

4.0 0.07

Network 3 0.97 0.69

Network 8 1.7 0.39

Network 9 1.7 0.46

Network 10 0.073 0.90

Intercept −7.3 0.80

Bolded variables were significant at a p value of 0.05.
EC, electrical conductivity; ITS, interrupted time series; SWOT, 
Safe Water Optimization Tool.
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process-based decay model, the FRC target it generated 
continued to ensure sufficient household FRC through 
the endline period, as described in the efficacy evalua-
tion section above. ANN-EFS performance remained 
strong both during baseline and endline periods, with 
its predictions within 3% of the observed proportion of 
households with <0.2 mg/L FRC at follow-up during the 
baseline period, and precisely within range during the 
endline period. The varying performance of the process-
based model, which takes a deterministic approach, 
compared with the ANN-EFS, which takes a probabilistic 
approach, may reflect the better suitability of a probabil-
istic approach for modelling high-variability data charac-
teristic of real-world humanitarian settings. Overall, the 
modelling performance demonstrated at Kutupalong-
Balukhali shows that the SWOT can generate context-
specific, data-driven water chlorination targets using local 
water quality monitoring data during an active humani-
tarian response.

The efficacy evaluation showed that when the SWOT 
chlorination target is delivered at tapstands, households 
that collected that water had ≥0.2 mg/L FRC at the 
point-of-consumption >90% of the time, compared with 
<35% with the status quo universal FRC target, demon-
strating the efficacy of the SWOT chlorination target 
at this site. While there are limitations with using FRC 
as a proxy for safe water, the main epidemic diseases in 
refugee and IDP settlements are caused by bacterial or 
viral pathogens such as Vibrio cholera and the hepatitis E 
virus1–3 11–16 that are effectively disinfected by 0.2 mg/L 
FRC.21 22 Thus, when the SWOT FRC target was delivered 
at tapstands, it provided >90% of sampled households 
with protection against high-priority waterborne diseases.

While the SWOT chlorination target was efficacious, it 
was not fully implemented at tapstands by water system 
operators, so no change in either tapstand or house-
hold FRC could be assessed during endline in the effec-
tiveness evaluation, a limitation of the present study. A 
randomised controlled trial design was not feasible for 
this study as it was not possible to subdivide the study site 

into intervention and control groups due to operational 
reasons, or to blind the delivery of the intervention. We 
controlled for other factors that could influence house-
hold FRC in the efficacy and effectiveness evaluations by 
mapping out these factors using DAGs and collecting data 
on as many as were feasible in the study setting, but this 
was still partial, another limitation of the present study.

The implementation of this study in an active human-
itarian response, while presenting certain limitations 
described above, did however provide an opportunity to 
critically evaluate barriers to effective implementation 
of SWOT targets. Feedback from water system operators 
at the site indicated that lack of operational feedback 
during routine water quality monitoring in the commu-
nity to flag that tapstand FRC was not meeting the SWOT-
recommended target contributed to this outcome. Future 
deployments of the SWOT should therefore include 
support to water system operators to implement feedback 
mechanisms that link tapstand water quality monitoring 
to water treatment operations.

A perennial concern with chlorinated water supplies 
in humanitarian settings is taste and odour-driven 
rejection,13 and such complaints have previously been 
documented from Rohingya refugees at Kutupalong-
Balukhali.33 The KAP survey (online supplemental 
appendix S5) showed that chlorine taste and odour were 
not major barriers to acceptance of the chlorinated water 
supply at Camp 1 during this study, but the population-
specific acceptability threshold is not known, a limitation 
of the present study. Effective chlorination practice ulti-
mately lies between two boundaries: having sufficient 
chlorine residual to protect water against pathogenic 
recontamination, but not so much as to cause taste 
and odour-driven rejection. The adoption of new tools 
to rapidly assess population-specific chlorine taste and 
odour acceptability thresholds to provide an upper limit 
for chlorination practice will be essential for ensuring 
that water supplies are both protective of public health 
and acceptable to users.34

Monitoring FRC at tapstands is standard practice in the 
humanitarian sector, and there is growing emphasis on 
household monitoring as well.6 Tapstand and household 
sampling is typically conducted in an unpaired manner 
with grab samples. With a minor adjustment of pairing 
tapstand and household measurements, the SWOT can 
leverage this data to improve household water safety. 
While a large volume of data was collected for evalua-
tion purposes in this study, the SWOT typically requires 
between 100 and 150 paired samples12 to generate an 
initial FRC target. This can usually be collected in a few 
weeks of intensive data collection as part of a household 
survey, or as part of routine water quality monitoring 
at a slower pace. Once an initial recommendation is 
generated, the SWOT’s models can be updated as new 
data come in to reflect latest field conditions. Given the 
observed decline in process-based modelling perfor-
mance, retraining should be done periodically—at least 
every 3 months based on the findings of this study—to 

Table 3  Regression coefficients and p values for an 
ITS regression model with tapstand FRC as the outcome 
variable

Variable Coefficient P value

Time from start of study (July) −0.00041 0.73

Time from start of SWOT 
intervention (October)

0.0020 0.27

Network 3 0.20 0.14

Network 8 −0.35 0.045

Network 9 0.024 0.84

Network 10 −0.35 0.025

Bolded variables were significant at a p value of 0.05.
FRC, free residual chlorine; ITS, interrupted time series; SWOT, 
Safe Water Optimization Tool.
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capture seasonal variations in chlorine decay conditions, 
but this retraining interval needs to be further evaluated.

Implications for policy and practice
The findings of this study, along with previous studies 
in South Sudan, Jordan and Rwanda,11 12 demonstrate 
that the universal water chlorination target presently in 
widespread use in emergencies fails to reliably ensure 
water safety at the household point-of-consumption, 
undermining the core public health objective of emer-
gency safe water interventions. Context-specific chlorin-
ation targets that are appropriate to local conditions are 
needed to ensure that treated water stays safe up to the 
point-of-consumption. This study demonstrates that the 
SWOT can generate such targets using routinely collected 
water quality monitoring data in an active humanitarian 
response, and that these targets, when implemented at 
tapstands, vastly outperform the status quo universal 
target with respect to household water safety. Given its 
capacity to resolve the ‘last mile’ challenge in chlorinated 
water supplies, the SWOT should be considered for inte-
gration into humanitarian WASH guidelines.

Postdistribution recontamination poses public health 
risks not only in refugee and IDP settings, but also in 
communities reliant on intermittent or non-piped water 
systems in low-income and middle-income countries 
(LMICs).35 Similar water safety challenges affect under-
served populations in high-income countries, including 
in remote and Indigenous communities dependent on 
small water systems.36 The SWOT may also offer a ‘last 
mile’ water safety solution for these contexts as well, 
supporting the realisation of the public health goals 
underlying the WHO GDWQ.9

Recent estimates by Greenwood et al, using Earth 
observation data, geospatial modelling and household 
surveys, suggest that over 4.4 billion people in LMICs 
lack access to safe drinking water—more than twice 
previous estimates for Sustainable Development Goal 
6—primarily due to widespread faecal contamination 
of water supplies.37 Scaling chlorinated water systems 
coupled with the SWOT to ensure water safety at the 
point-of-consumption offers a viable path to closing this 
gap. This need is especially urgent in rapidly growing 
refugee and IDP settlements, where displaced popu-
lations face heightened vulnerability to waterborne 
diseases such as cholera, which has surged globally since 
2021.38 The number of forcibly displaced people rose 
by over 50% from 79.5 million in 2019 to 122.6 million 
in 2024—the highest ever recorded.39 40 The SWOT can 
play an enabling role in helping safe water programmes 
achieve their full public health potential in these high-
risk settings.

CONCLUSION
This proof-of-concept evaluation of the SWOT at the 
Kutapalong-Balukhali refugee settlement demonstrated 
that the SWOT can generate context-specific, data-driven 

water chlorination targets when presented with new water 
quality data collected in an active humanitarian response. 
The context-specific chlorination target generated by the 
SWOT for Kutapalong-Balukhali Camp 1 was associated 
with improved household FRC outcomes when it was 
delivered at water distribution points compared with the 
status quo universal FRC target (ie, Sphere). However, 
partial implementation of the SWOT target at tapstands 
by water system operators led to the overall intervention 
having no effect on tapstand or household FRC. Feed-
back mechanisms between water quality monitoring and 
water treatment operations would help water system 
operators fully implement SWOT chlorination targets 
at tapstands. Overall, the study demonstrates that the 
SWOT can help ensure water remains protected against 
pathogenic contamination up to the household point-of-
consumption in refugee and IDP settlements with piped 
networks delivering chlorinated groundwater, but addi-
tional supports are needed to help water system opera-
tors achieve chlorination targets at tapstands.
X Syed Imran Ali @imranono
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