

Modelling to support routine PCV introduction in Somaliland

MSF Scientific Days 2025 22/05/25

<u>Gregory Barnsley</u>, Abdirahman Ibrahim Hassan, Saed Ibrahim, Mohamed O Bobe, Casey L Pell, Catherine Satzke, Abdikarim Mohamed Ahmed, Rachael Cummings, Bhargavi Rao, Mohamed Abdi Hergeye, Francesco Checchi, Stefan Flasche, **Kevin van Zandvoort**

Streptococcus pneumoniae

Epidemiology

- Bacteria carried in nasopharynx
 - ∘ ~5-20% of adults and 30-80% of children
- Causes **pneumonia**, **meningitis**, and **sepsis** in young children, immunocompromised, and the elderly
- Over 100 serotypes, though a handful of serotypes dominate carriage and disease

Pneumococcal Conjugate Vaccines (PCVs)

- Protect against carriage and disease of most virulent serotypes
- Have substantially reduced pneumococcal disease burden in majority of countries
- PCV still not introduced in a number of countries, and underutilized in humanitarian crises
 - coverage issues in several LMICs

Prevalence of Invasive Pneumococcal Disease in U.S. Before and After PCV7 and PCV13 Vaccine Introductions

PCV developments relevant for low-coverage and humanitarian settings

- 2015 onwards: MSF Access campaign to reduce price of PCV in humanitarian settings
- 2017: humanitarian mechanism (WHO, Unicef, Médecins Sans Frontières and Save the Children) guarantees access for humanitarian use of PCV at Gavi-level pricing
- 2019: Pneumosil (SII) vaccine WHO prequalified, substantially reduced price
- 2019 ongoing: LSHTM-led studies on effectiveness of PCV campaigns in humanitarian crises
- 2020: Gavi dropped requirement of DTP3 coverage >70%, for PCV eligibility
- 2022 2024: Epicentre trial finds fractional (20%) dose Pneumosil campaign is non-inferior to full dose

Somaliland

- Low-income country in the horn of Africa
- Affected by food insecurity and droughts
 - o substantial levels of displacement in the country
- High childhood mortality associated with respiratory diseases
- Somaliland (and Somalia) introducing PCV in 2025
- Low routine vaccination coverage of other vaccines

PCV studies in Somaliland

Modelling the potential impact of PCV vaccination strategies in humanitarian crises (MSF Scientific Days 2023)

Validating modelling work with an intervention study (EEPICC study)

- Evaluating the Effectiveness of a PCV campaign in Somaliland IDP camp
- 2. Cross-sectional survey in Somaliland capital of Hargeisa, to support national decision making

Supporting national PCV decision makers in Somaliland

Aim: to explore the likely impact of introducing PCV in the national childhood vaccination programme

Support decision makers to understand:

- 1. What is the effectiveness and efficiency of PCV at realistic coverage levels?
- 2. What PCV product should be introduced?
- 3. Which vaccination schedule should be used?
- 4. Should catch-up campaigns be used to accelerate PCV impact?

Modelling vaccination impact

Key data

 Cross-sectional study estimating pneumococcal carriage prevalence in Hargeisa in 2022

Methods

 Mathematical modelling to simulate impact of different vaccination scenarios on carriage and disease

Routine PCV coverage

Coverage Assumptions

Based on a 2020 survey, coverage for 3rd dose DTP is 14% to 52%. Two scenarios are modelled:

Realistic: 30% coverage

• *Ideal*: 80% coverage

Pentavalent vaccine	Number	Valid data	Percentage	Age group in months	
dose 3		(%)	%	Minimum	Maximum
				age	age
Not vaccinated	368	48.2%	13.8%	3	56
On time vaccinated	82	10.7%	3%	3	18
Delayed time	127	16.6%	4.7%	19	52
vaccinated					
Not applicable	186	24.4	7%	0	2
Subtotal	763	100%			
Missing values	1910		71.5%	3	59
Grand total	2673		100%		

https://doi.org/10.3390/vaccines12050509

Somaliland Demographic and Health (Household) Survey 2020

Impact of varying coverage

Coverage	Realistic (30%)	Ideal (80%)	
Annual IPD Cases averted,	54 (36 - 86)	131 (89 - 201)	
first 5 years Median (95% Crl) % of Baseline IPD	9% (5% - 13%)	21% (13% - 29%)	
Annual IPD Cases averted,	186 (93 - 300)	301 (206 - 429)	
Equilibrium Median (95% Crl) % of Baseline IPD	30% (14% - 47%)	49% (32% - 62%)	

Vaccine Formulation

Formulations:

- Prevenar 13 (PCV13) vs Pneumosil (PCV10)
- Both covered by Gavi
- Pneumosil ~ 30% cheaper, but PCV13 covers an additional 3 serotypes
- Pneumosil designed to prioritise serotypes relevant to LMICs

Comparison of Vaccine Formulations 3+0 Schedule, No Catch-up, Coverage 30%

Number of Vaccines Needed (NVN):

NVN is the number of vaccinations needed to prevent one case of IPD in under 5s

NVN equilibrium at 30% coverage		NVN relative to PCV13
PCV13	Pneumosil	Pneumosil
895 (553 - 1780)	1800 (906 - 18900)	2.0 (1.2 - 18.7)

Dosing Schedule

3p+0:

- Standard schedule recommended by WHO
- All 3 doses by 6 months of age

2p+1:

- Reduced primary series (with reduced VE) and a booster dose at 1 year of age
- Reduced coverage for booster (based on MCV vs DTP coverage)
- Provides longer lasting protection at older ages

NVN of 2+1 relative to 3+0	Coverage		
	30%	80%	
Over first 5 years	1.09 (1.07 - 1.12)	1.04 (1.00 - 1.09)	
At equilibrium	1.02 (0.91 - 1.07)	0.81 (0.81 - 0.97)	

Accelerating impact

Catch-up campaign

- Considered campaign in <1, <2, and <5yo
- Assumed coverage is the same as for routine immunisation
- Accelerates the impact of PCV, and under 5 catch-up would accelerate the impact on IPD by 2.5 years
- A catch-up campaign is an efficient use of doses over the first 5 years

Conclusion

- PCV is likely to have a substantial impact on the pneumococcal disease burden in Somaliland.
- At realistic coverage levels, PCV would prevent 30% (14% 47%) of pneumococcal disease burden. This could increase to 49% (32% 62%) at 80% coverage.
- Both **PCV13** and **Pneumosil would be effective** in reducing the pneumococcal disease burden. PCV13 impact is higher, but considerable uncertainty around estimates.
- A **3p+0 schedule may be more beneficial** than a 2p+1 schedule at realistic coverage levels, but differences are negligible.
- A catch-up campaign in <5yo could accelerate the gain of indirect protection, particularly at realistic routine coverage levels
- Alternative vaccination strategies may be considered for specific sub-populations, e.g. nomadic and displaced populations

Acknowledgements

London School of Hygiene and Tropical Medicine: Stefan Flasche, Francesco Checchi, Kevin van Zandvoort, Catherine R McGowan, Abdihamid Warsame, Gregory Barnsley

Save the Children Somaliland: Mohamed Bobe, Saed Abdi Ibrahim, Mohamed Saed Ahmed, Mohamed Magan,

Republic of Somaliland Ministry of Health Development: Abdirahman I Hassan, Mohamed A Hergeye, Mohamed Y Warsame, Mustapha A Karim

Save the Children UK: Rachael Cummings

Murdoch Children's Research Institute: Catherine Satzke, Casey Pell, Kim Mulholland,

Belinda Ortika

Médecins Sans Frontières: Bhargavi Rao, Ruby Siddiqui, Kartini Gadroen

Greg Barnsley, **LSHTM**

