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Since the COVID-19 pandemic, considerable advances have been made to improve epidemic preparedness by 
accelerating diagnostics, therapeutics, and vaccine development. However, we argue that it is crucial to make 
equivalent efforts in the field of outbreak analytics to help ensure reliable, evidence-based decision making. To explore 
the challenges and key priorities in the field of outbreak analytics, the Epiverse-TRACE initiative brought together a 
multidisciplinary group of experts, including field epidemiologists, data scientists, academics, and software engineers 
from public health institutions across multiple countries. During a 3-day workshop, 40 participants discussed what 
the first 100 lines of code written during an outbreak should look like. The main findings from this workshop are 
summarised in this Viewpoint. We provide an overview of the current outbreak analytic landscape by highlighting 
current key challenges that should be addressed to improve the response to future public health crises. Furthermore, 
we propose actionable solutions to these challenges that are achievable in the short term, and longer-term strategic 
recommendations. This Viewpoint constitutes a call to action for experts involved in epidemic response to develop 
modern and robust data analytic approaches at the heart of epidemic preparedness and response.

Introduction 
Since the acute phase of the COVID-19 pandemic ended 
in 2021, there has been substantial interest in reducing 
future pandemic effects, most notably with the G7 100 
Days Mission,1 which aims to accelerate the development 
and deployment of diagnostics, therapeutics, and 
vaccines in future health crises. In addition, countries 
will need to make decisions about how to best respond to 
(novel) epidemic and pandemic threats, including during 
the early phase of an outbreak. Such decisions rely on a 
good understanding of epidemic characteristics and 
dynamics, which cannot be achieved without effective 
methods and software tools to collect, clean, curate, and 
analyse available data. Alongside early development of 
public health interventions and the removal of bottle-
necks to this development, it is crucial to consider 
corresponding requirements for reliable and timely 
outbreak analytics. What should the early lines of code 
written during a new outbreak look like? Which building 
blocks are essential to ensure relevance both to specific 
pathogens and to local contexts?

In the last 5 years, there has been increasing interest 
in outbreak analytics because of growing technical 
capacity, ongoing disease threats, and increasing data 
literacy and data sharing.2,3 However, this new field 
faces a range of challenges across all stages of an 
outbreak, from early situational awareness to long-term 
scenario analysis. Different tasks and responsibilities 
need to be fulfilled throughout these stages, including 
data management, field epidemiology and descriptive 
statistics, and advanced epidemiological analyses and 
modelling, which all rely, in some capacity, on the use 
of analytical tools. In this Viewpoint, we use “tool” to 
refer to software resources, such as programs, applica-
tions, packages, code scripts, and artificial intelligence 
interfaces, with “end users” being anyone or 

institutions that conduct outbreak analytic tasks using 
these software tools.  

Outbreak analytic pipelines have historically been 
either absent or generated reactively mid-outbreak,4,5 
with different research groups separately replicating 
analysis steps from scratch, creating potential for errors 
and duplicated efforts (figure 1). These fragmented 
pipelines result in outputs—whether modified datasets 
or epidemiological estimates—that are not compatible or 
comparable, leading to inefficiencies and reducing the 
speed, scalability, reproducibility, and reliability of 
insights.6 

Several international initiatives have emerged to 
support progress in outbreak analytics, including 
package development by RECON (R Epidemics 
Consortium), automated outbreak templates by R4EPIs,  
reference material in the The Epidemiologist R 
Handbook developed by Applied Epi, and platforms such 
as rOpenSci and Global.health. More recently, the 
Epiverse initiative was formed with the aim of contribut-
ing to the development of a robust outbreak analytics 
ecosystem ahead of future public health crises.7 

To build on such efforts, it is important to identify 
current key challenges and priorities in outbreak 
analytics. To explore these issues, the Epiverse 
community convened a multidisciplinary group of field 
epidemiologists (n=9), data scientists (n=9), academics 
(n=18), and software engineers (n=7) from multiple 
countries and institutions involved in outbreak response 
activities, who have contributed to the elaboration of this 
Viewpoint, and are listed as co-authors. Taking inspira-
tion from the 100 Days Mission, this event was named 
100 Days and 100 Lines of Code. During a 3-day 
workshop, 40 participants discussed what the first 
100 lines of code written during an outbreak should look 
like, and mapped existing tools and packages for outbreak 
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analytics.8 Here, we review the challenges and opportuni-
ties that emerged, which can be divided into three broad 
categories: usability of tools, ecosystem of tools, and 
development of tools (figure 2).

Usability of tools
There is often a disconnect between the people who are 
researching methods and those developing tools for 
outbreak analytics, and the potential users of those tools. 
This gap in the real-world application of tools can stem 
from a range of causes, since users will have a range of 
requirements, from robust, fast descriptive epidemiologi-
cal analysis to advanced analytics and scenario modelling. 
Some intended users might not be aware of the existence 
of tools to perform analytical tasks, or the tools that they 
know of might not be suitable for their specific needs—
eg, to account for issues such as truncation, censoring, or 
missing data. Users might also be reluctant to use tools 
that they do not consider trustworthy, either because they 
are unsure of the reliability of outputs, or because code 
might change without warning. Tools might not be user-
friendly; for example, they could be difficult to install, 
have long runtimes, have poor documentation that does 
not include realistic use-case examples, or have non-user-
friendly outputs that are difficult to interpret, especially 
for non-professional audiences. Further, users might not 
use tools that require inputs to follow a time-consuming 
custom format that differs from those typically used. 

Several potential solutions could be pursued in the 
short to medium term to address these gaps. First, public 
health and academic institutions should refer to and 
promote the use of resources, such as CRAN Task View,9 
that provide an overview of existing outbreak analytic 
tools and encourage the dissemination of training tools, 
such as the Epidemiologist R Handbook. Beyond these 
resources, public health and academic institutions could 
implement recurring in-person or online practical 
courses that enable live interactions with tool developers. 
These resources and training would improve awareness 
of available tools and enable potential end-users to 

improve their data analytics skills. This improvement in 
skills would increase end-user autonomy and facilitate 
more productive interactions with tool developers, such 
as requesting new features, submitting use-cases for 
vignettes, or reporting bugs. Second, as new tools are 
developed and implemented, target end-users could be 
routinely consulted on their needs and preferences, by 
involving them in all steps of the development process 
and co-creating realistic case studies for tool documenta-
tion, which would also help to identify barriers for 
adoption of outbreak analytic tools. For example, 
members of Epiverse TRACE-LAC10 have established a 
programme of engagement with public health teams to 
review packages from the early stages of development. 
Discussion boards and community forums (eg, Applied 
Epi Community forum) can also support ongoing 
engagement between relevant groups. 

To facilitate effective end-user training and interactions 
in the long term, it will be necessary to build a culture of 
engagement, transparency, and accountability within 
different research groups by incentivising cross-discipli-
nary partnerships with dedicated funding and 
multidisciplinary projects and identifying ways to ensure 
that resources are available to support and coordinate 
this work. Sustainable outbreak analysis will also benefit 
from having locally led teams in place by fostering 
expertise to develop and use data analytic tools, rather 
than relying on outsourced ad-hoc analysis developed 
mid-epidemic. For tools to be truly flexible, they should 
not only but also be easily adaptable to local needs, they 
should also adapt to local computation capabilities and 
language—for instance, by providing outputs where 
language and complexity are adaptable depending on the 
needs and expertise of the target audience.

Ecosystem of tools
Besides interactions between tool developers and end-
users, adequate links between analytics teams involved 
in epidemic response are essential for continued 
awareness about existing data analysis tools being 

Figure 1: Workflow for real-time transmission analysis to estimate the effective reproduction number, where infection events and the serial interval are used 
as data inputs 
Each box represents an analysis task, while each arrow represents outputs being passed as inputs to the next task. Each of these steps can involve multiple potential 
bottlenecks—for instance, users might be unsure of which tool to choose to conduct a specific task, for which no appropriate tools may exist; or if outputs need to be 
formatted to be used as the next tool’s input because tools are not interoperable, which can involve substantial additional work.
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developed by other groups, also reducing task duplica-
tions and inefficiencies. One historical obstacle for 
collaborative development has been a lack of transpar-
ency and reproducibility in computational analyses 
within academia that remains an issue, despite having 
improved with journals pushing for the inclusion of code 
in scientific articles. If code used to analyse epidemiologi-
cal data is not made publicly available or if the quality of 
the available code does not enable its reproducibility, 
future duplication is inevitable. Another challenge is the 
absence of interoperability and standardisation of 
nomenclature and approach between the existing tools 
and resources. If data outputs from one tool cannot 
directly be treated as inputs by others, unnecessary lines 
of code need to be added to make a functioning data 
pipeline. For example, a package might be set up to 
analyse incidence data or incorporate existing epidemio-
logical parameters, but the format of these datasets needs 
to align with outputs from data cleaning scripts and 
parameter databases.

One way to improve the transfer of knowledge between 
teams is to encourage the use of collaborative platforms. 
Researchers are increasingly trained on how to manage 
sequential versions of their code using tools such as 
GitHub, but there is less focus on the community aspects 
of these platforms, which allow users to co-develop and 
share their libraries of tools. 

In addition, not all field epidemiologists and analysts 
working in outbreaks are familiar with code-sharing 
platforms such as GitHub. Hosting specially dedicated 
events, such as workshops and showcases, can further 
support capacity building on how to best use collaborative 
platforms, or how to optimally approach package develop-
ment by enabling early opportunities to provide feedback. 
Furthermore, there needs to be sufficient incentives for 
researchers to not only but also upload their code to col-
laborative platforms, but to maintain and provide good 
documentation for their code. A potential solution is for 
these platforms to offer features that streamline develop-
ment, such as analytical tools to help researchers debug 
their code. In the process, these collaborative platforms 
and events will expose semantic differences and prioriti-
sation frameworks that can be challenging to 
multidisciplinary teams, but will ultimately lead to more 
robust and interoperable discussions for needs 
assessment.

To ensure a smoothly functioning tool ecosystem in 
the long term, researchers and developers will also 
require a way to receive feedback and quality control 
checks from other members of the community. This 
ecosystem could cover good practice standards in the 
development process, including standards for the 
minimum requirements for documentation, and simu-
lation recovery to show the accuracy of methods with a 
known ground truth, which would reduce reliance on 
non-accessible data in the assessment of method quality. 
One option would be to use platforms such as ROpenSci 

that allows users to search for and compare the func-
tionality of different tools and select those that are best 
suited to their specific analyses. This ecosystem man-
agement could take a number of forms, such as a 
centralised badge of quality similar to digital public 
goods, organisational standards for structured data col-
lection during outbreaks such as WHO’s Go.Data 
platform,11 community user-led curation initiatives 
similar to Applied Epi,12 or developer-led curation such 
as R tidyverse. Good practice community standards 
could also be used to improve the interoperability 
between outbreak analytic tools by standardising the 
format of inputs and outputs. To address the issue of 
interoperability, the community could focus on develop-
ing plug and play pipelines, which are broken down into 
modules to perform smaller tasks that can be added or 
removed depending on the purpose of the analysis, 
using systems such as Data-flo. Ideally, this interopera-
bility would extend across different languages, such as 
R and Python that are commonly used in outbreak 
analytics.     

Development of tools
Despite improvements in tool development for outbreak 
analysis in recent years, several crucial gaps remain. 
First, those working on outbreak data often struggle to 
apply their preferred tools directly to messy, incomplete, 
real-time datasets. In particular, the unpredictability of 
data and outbreak questions can make it challenging to 
proactively develop general tools that solve predictable 
questions (table 1). Data formatting and cleaning typically 
takes up most of the analyst’s time during an outbreak, 
reducing time available for downstream analysis that can 
directly answer questions relevant to the outbreak 
response. Potential solutions include data cleaning pro-
cedures that are specifically suited to predictable nuances 

Figure 2: Summary of the key areas identified by the 100 Day workshop 
participants as the priorities for improvement of outbreak analytic pipelines
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of epidemiological data; for example, to easily standard-
ise data to a line list format for R. Analysis pipelines 
developed for a specific outbreak will often include 
underlying functionality that could be applied to other 
situations; if this functionality were made more accessi-
ble to users, it would reduce reliance on code that should 
be developed reactively. 

In the longer term, users would benefit from increased 
standardisation—or at least predictability—in epidemio-
logical data. This standardised data could consist of 
easily available templates for data collection and format-
ting that include key variables, such as socio-economic 
characteristics or clinical information for each case and 
templates that provide basic folder and scripting 
structure, a list of relevant packages, and code examples 
(eg, using tools such as cookiecutter).13 Another key 
aspect to promote standardisation is the use of 
metadata,14 to describe how data are collected and struc-
tured in a systematic way so that outputs from tools that 
are adopted independently can be combined. An 

example of such standardisation is the HXL standard 
used by humanitarian organisations, where specific 
hashtags are used to characterise dataset columns 
regardless of their format to promote interoperability 
between data sources.

When analysing epidemics, it is often challenging to 
find usable values for relevant disease parameters in the 
available literature. For example, estimating the repro-
duction number of a disease requires estimates of 
underlying disease delay distributions. Extracting these 
values can be a time-consuming process, often with con-
siderable uncertainty in how parameters are estimated 
and whether they are suitable for the characteristics of a 
specific outbreak and the timing of the analysis as inter-
ventions are implemented. To address this issue, a 
standardisation process for rapid literature reviews is 
needed (eg, ASReview), and resources that facilitate the 
access to reliable parameter estimates. For example, the 
WHO Collaboratory,15 which provides a library of infec-
tious disease distributions, is crowdsourced by 

General tool Specific pipeline 

Predictable 
task

Data cleaning tasks common to most data formats; comparing common control 
options (eg, mass vaccination) for known pathogens; handling delay distributions; 
estimating common features such as transmissibility or severity; describing data by 
time, place, or person

Data cleaning specific to a rare but known data format; comparing setting-specific 
control options (eg, tailored non-pharmaceutical interventions) for known pathogens; 
epidemic forecasts; saving and sharing data 

Unpredictable 
task

Exploring broadly used scenarios for as-yet-unknown pathogens Exploring setting-specific control for as-yet-unknown pathogens; data cleaning 
specific to a new data format

Table 1: Examples of predictable versus unpredictable analytic tasks during an outbreak and whether general or specific approaches are required to tackle them

Short-term solutions Long-term work needed

Usability

Users lacking data analytic skills or being 
unaware of existing tools and packages

Promotion of existing resources and training; tools to produce 
human-friendly outputs

R and data analysis training programmes implemented across institutions and in 
multiple languages

Existing tools not matching end-user 
needs

Improvement of documentation of tools to include 
application examples; documentation in multiple languages

Involvement of end-users in all steps of development; dedicated roles within teams 
for user engagement; use of artificial intelligence tools to facilitate documentation 
and training

Ecosystem

Teams being unaware of tools under 
development from other community 
members

Better integration of tools via showcase events; use of GitHub 
or similar platforms

Creation of an interactive platform that contains tools relevant to outbreak analytics; 
enable community feedback on package development; enable quality control by 
community members; enable comparisons of the functionality of available tools

Absence of interoperability between 
tools

Potential for middleware Creation of an interactive platform that contains tools relevant to outbreak analytics; 
enable community feedback on package development; enable quality control by 
community members; enable comparisons of the functionality of available tools

Absence of reproducibility or robustness 
of analyses

Openly sharing full pipeline (including code, data, and 
documentation); standardised checks (eg, simulation 
recovery)

Creation of an interactive platform that contains tools relevant to outbreak analytics; 
enable community feedback on package development; enable quality control by 
community members; enable comparisons of the functionality of available tools

Development

Dealing with non-standardised, messy 
data

Promotion of existing data cleaning tools (eg, janitor 
package); promotion of exiting open-access data collection 
tools (eg, Go.Data,11 ODK, or Kobotoolbox) to allow for 
consistent data structure

Development of tools to extract and explore multiple parameter distributions in 
downstream analysis; development of data cleaning tools specific to epidemiological 
data

Uncertainty regarding the outbreak’s 
causative agent

Establish reliable database of disease parameters; use of and 
improvement of tools to develop outbreak scenarios

Development of tools to extract and explore multiple parameter distributions in 
downstream analysis; promote the publication and collection of parameters 
alongside scientific papers

Sustainability of tools and packages Improvement of interoperability between existing tools; allow 
multiple routes for community co-creation

Adequate incentives for experts in different roles; ensure development of free, 
well-maintained, open-access tools to aid in informing outbreak response 

Table 2: Challenges and their short-term versus long-term solutions within each of the key areas for outbreak analytics, identified by the 100 Days workshop participants
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researchers working in the field via systematic reviews 
and is supported by software infrastructure to store and 
use parameter estimates in analytic pipelines.16 In the 
future and for reporting parameter estimates in scientific 
publications, researchers could be encouraged to add 
these estimates directly to a publicly available parameter 
repository. Some of the resulting data and software infra-
structure could also be adapted for other health 
conditions (eg, parameters for non-infectious diseases).

Another challenge is the uncertainty inherent to novel 
disease threats. If the causative agent of an outbreak is 
unknown, analysis pipelines should allow for the explora-
tion of multiple parameter distributions corresponding to 
potentially relevant pathogens, such as the serial interval 
and incubation period. Furthermore, to allow teams to 
validate their methods and provide training materials for 
their members, the ability to routinely generate simulated 
epidemic data under a range of scenarios would ensure 
robustness of novel tools and methods. 

Ultimately, the sustainability of software tools is key. 
Development is usually funded with time-limited grants, 
so there is a risk that software will stop being maintained 
after projects end. To enhance predictability and planning 
security for end-users, developers should disclose the 
current maintenance level and the planned and minimal 
guaranteed period of support for their tools. The role of 
research software engineers has only recently been estab-
lished in some academic institutions, and their 
retainment and promotion within the traditional 
academic pathways remains a challenge. Therefore, 
better incentivisation schemes and strategies need to be 
established to meet the different needs of the members 
of a research team.17 

Conclusion
This Viewpoint was developed as a collaborative effort 
between the participants of the 100 Days workshop, to 
highlight some of the key gaps for improvement in the 
field of outbreak analytics. Some of the predictable chal-
lenges identified could be addressed collectively in the 
short to medium term within existing team structures, 
whereas other challenges will require sustained efforts 
and planning, including institutional support and 
external funding (table 2). 

Substantial resources have been deployed to improve 
epidemic preparedness in the aftermath of COVID-19, 
including development of vaccines, therapeutics, and 
diagnostics. However, to ensure an effective response, 
similar efforts need to be made to improve early data 
management and analysis, which will require develop-
ment ahead of time to address as many of the predictable 
aspects of an outbreak as possible, freeing up capacity for 
unpredictable aspects. The success of accelerated vaccine 
development has come from flexible platforms, such as 
vectored vaccines and mRNA, while therapeutic trials 
have benefited from platform trials such as RECOVERY,  
that can simultaneously answer multiple questions. 

Similarly, effective analytics workflows will ideally be 
both flexible and scalable. The necessary financial invest-
ment to develop such workflows would be substantially 
lower than the resources needed for public health inter-
ventions or vaccine development. Furthermore, these 
workflows could be used with different pathogens, 
including those that cause recurring outbreaks, such as 
measles or cholera, making them a particularly cost-
effective investment.
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