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Background. Nipah virus (NiV), a highly lethal virus in humans, circulates in Pteropus bats throughout South and Southeast 
Asia. Difficulty in obtaining viral genomes from bats means we have a poor understanding of NiV diversity.

Methods. We develop phylogenetic approaches applied to the most comprehensive collection of genomes to date (N = 257, 175 
from bats, 73 from humans) from 6 countries over 22 years (1999–2020). We divide the 4 major NiV sublineages into 15 genetic 
clusters. Using Approximate Bayesian Computation fit to a spatial signature of viral diversity, we estimate the presence and the 
average size of genetic clusters per area.

Results. We find that, within any bat roost, there are an average of 2.4 co-circulating genetic clusters, rising to 5.5 clusters at 
areas of 1500–2000 km2. We estimate that each genetic cluster occupies an average area of 1.3 million km2 (95% confidence interval 
[CI], .6–2.3 million km2), with 14 clusters in an area of 100 000 km2 (95% CI, 6–24 km2). In the few sites in Bangladesh and 
Cambodia where genomic surveillance has been concentrated, we estimate that most clusters have been identified, but only 
approximately 15% of overall NiV diversity has been uncovered.

Conclusions. Our findings are consistent with entrenched co-circulation of distinct lineages, even within roosts, coupled with 
slow migration over larger spatial scales.
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Nipah virus (NiV) is a bat-borne virus and a World Health 
Organization priority pathogen [1]. Most infections in humans 
are fatal, and while most of them occur following zoonotic spill-
over, human-to-human transmission is responsible for around 
a third of known cases [2]. There are currently no approved 
treatments or vaccines. NiV was first identified in Malaysia in 
1999 and has since recurred almost annually throughout 
South Asia [3–5]. Pteropus fruit bats are its reservoir hosts, 
and spillover pathways vary [6]. In the 1999 outbreak in 
Malaysia, human infection occurred through contact with 
pigs who had been infected from eating contaminated fruit 

[7, 8]. In Bangladesh, the primary cause of human infection 
is consumption of raw date palm sap from trees upon which in-
fected bats have fed [4]. Infected horses have also been impli-
cated [9], while the source of the outbreaks in Kerala, India, 
remain unknown.

Despite the substantial risk to human health, little is known 
about NiV’s underlying genetic diversity. Pteropus bats are 
found throughout South and Southeast Asia and are commonly 
infected with NiV, with serostudies identifying NiV antibodies 
in 3%–83% of adult bats across the region [3, 10, 11]. However, 
infection patterns within bat populations remain unclear, in-
cluding the number of discrete lineages circulating in roosts, 
the spatial spread of different lineages, or NiV’s ability to trans-
mit between different Pteropus species. We also do not under-
stand whether specific lineages are linked to increased spillover 
risk, including specific routes of transmission. These critical 
knowledge gaps are problematic for assessments of spillover 
risk and vaccine development.

Characterizing NiV’s genetic diversity is difficult as many 
isolates come from human cases, which remain rare. Even 
Bangladesh, the country with most spillover events, reports 
only an estimated approximately 15 spillovers annually [12]. 
The representativeness of viruses obtained from human infec-
tions is also unclear. This has motivated efforts to obtain NiV 
sequences from bat populations; however, this is difficult as 
bats are asymptomatic and viral shedding is infrequent [11]. 
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NiV sequencing from bats has focused mainly on a few loca-
tions within Thailand, Bangladesh, and Cambodia [13–15]. 
While it is difficult to make inferences about NiV diversity 
using sequences from any 1 location, we can obtain a more 
complete picture by pooling information across different loca-
tions combined with appropriate analytical methods. Here we 
provide a comprehensive assessment of the diversity of NiV us-
ing all publicly available sequences coming from 6 countries, 
along with several previously unpublished sequences. We de-
velop methods that are robust to strong biases in where and 
when sequences are obtained to track the diversity of NiV 
across spatial scales (within roost, district, country, and inter-
nationally) and quantify the extent to which diversity has 
been fully identified in locations that have implemented exten-
sive surveillance efforts.

METHODS

Data Collection and Alignment

We collected all available NiV genomes in GenBank (N = 301, 
Supplementary Table 1) [16] and compiled their date, host 
species, and place of collection. We also included several pre-
viously unpublished sequences (N = 26), collected between 
2013 and 2016 in 2 bat roosts in Cambodia. The sampling 
and screening approach for NiV for these sequences is ex-
plained elsewhere [15].

We aligned the sequences using MUSCLE on MEGA-X [17]. 
Among the sequences, 175 were sampled from 6 different bat 
host species: Pteropus lylei (n = 120), Pteropus medius (formerly 
Pteropus giganteus, n = 41), Pteropus vampyrus (n = 6), 
Pteropus hypomelanus (n = 6), Hipposideros larvatus (n = 1), 
and a Taphozous bat of undetermined species (n = 1). Other 
sources of sequences were humans (n = 73), pigs (n = 7), a 
dog (n = 1), and an uncertain host (n = 1). Sequence length 
varied from 153 bp to 18.2k bp (full genome). There were 64 
full-length genomes, 185 genomes from the nucleocapsid (N) 
gene, and the remainder covering different parts of the NiV 
genome (Supplementary Table 2).

Phylogenetic Analyses

We evaluated temporal signal and performed model selection 
using IQ-Tree [18, 19] and Bayesian evaluation of temporal sig-
nal (BETS) [20, 21]. We then reconstructed a time-resolved 
phylogeny using BEAST (version 1.10.4) [22].

To assess whether some sublineages were more likely to result 
in spillovers than others, we considered only sequences from 
Bangladesh, as it is the only country with human cases regularly 
documented. We assessed whether human cases occurred with 
higher frequency in any 1 of the sublineages as compared to the 
distribution of sublineages in bats using a Fisher exact test.

We next analyzed the speed at which NiV has spread across 
South and Southeast Asia by computing the mean spatial 

pairwise distance as a function of the pairwise evolutionary dis-
tance for each pair of sequences.

Characterization of NiV Genetic Clusters

We used PhyCLIP, a phylogenetic clustering Python module, to 
cluster the sequences in the tree into different genetic clusters 
[23]. We analyzed sequence cluster distribution across countries 
and bat host species. We also analyzed the spatial distribution of 
bat species in our dataset. We implemented logistic regression 
to explore genetic clusters’ spatial signature, their relationship 
with bat host species, and bat host species spatial signature. We 
conducted sensitivity analyses where we increased or reduced 
the number of clusters (see Supplementary Material).

Rarefaction Analysis

We explored how the observed number of genetic clusters 
evolved with sampling, and how it could evolve if more se-
quences were to be sampled. Focusing on locations with ≥10 
available sequences and ≥2 observed genetic clusters, we imple-
mented a rarefaction analysis using the iNEXT package [24, 
25]. We then investigated the relationship between the estimat-
ed underlying number of discrete clusters in a location and dif-
ferent ecological variables (mean pairwise spatial distance 
between sequences, human population density, and percentage 
of tree coverage) from that location using Poisson regression.

Approximate Bayesian Computation

We implemented Approximate Bayesian Computation to char-
acterize NiV genetic clusters’ spatial footprint (Supplementary 
Figure 1). We estimated the number of genetic clusters and 
their average size in areas where Pteropus bats circulate. For 
each country with Pteropus circulation, we explored different 
estimates of the geographic range of Pteropus bats.

Additional details on the methods can be found in the 
Supplementary Material.

Ethics Statement

This project was conducted using publicly available sequence 
data with no identifiable information and therefore did not re-
quire ethical approval.

RESULTS

We analyzed 257 sequences from 6 countries (Figure 1A) 
covering a 22-year time period (1999–2020, Supplementary 
Figure 2). Seventy-three (28%) of the sequences came from hu-
man infections, 175 (68%) from bats (Figure 1B), and 5 (4%) 
from other sources. BETS [26] analysis supported a model in-
cluding the sampling dates of sequences over a model in which 
they were considered contemporaneous (Bayes factor: 415). We 
built a time-resolved phylogeny and found that sequences 
could be broadly characterized into 2 major genotypes, I and 
II, previously reported [27], and 4 minor genotypes, IA, IB, 
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IIA, and IIB (Figure 1C). We estimated a mean nucleotide 
substitution rate of 4.5 × 10−4 substitutions/site/year (95% con-
fidence interval [CI], 2.9 × 10−4 to 6.0 × 10−4), consistent with 
previous estimates [14]. Genotypes I and II diverged in 1937 
(95% CI, 1838–1983), and the minor genotypes diverged in 
the 1970s. There was broad spatial structure in these genotypes, 
with countries on the eastern (Indonesia/Malaysia) and west-
ern edges (India) of the region having only 1 circulating subli-
neage. Cambodia, with a central position, had sequences from 
all 4 sublineages (Figure 1D).

Most sequences from human cases were from Bangladesh 
(n = 55/73), where there were 2 circulating sublineages (IA 
and IB). Lineage IA was found throughout 2004–2018, whereas 
IB was detected only through 2006–2009 (Supplementary 
Figure 3A). We found that all human sequences in Bangladesh 
came from genotype IA. In contrast, 64.9% (n = 24/37) of bat se-
quences came from IA and 35.1% (n = 13/37) from IB 
(Supplementary Figure 3B), suggesting that some genotypes 
may have higher probability of spilling over into human popula-
tions (P = .007 from Fisher exact test).

Figure 1. A, Country of origin sequences with location of bat roosts. The size of the circles is proportional to the number of samples from each location. B, Number of 
sequences obtained for the different bat species (total N = 175). C, Reconstructed time-resolved maximum clade credibility phylogeny; tips are colored with country of origin 
and non-bat sequences are marked with an asterisk. D, Proportion of sequences that come from each sublineage distribution for each country; the countries are ordered from 
West to East. Abbreviations: BGD, Bangladesh; IDN, Indonesia; IND, India; KHM, Cambodia; MYS, Malaysia; THA, Thailand.
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We used the time-resolved phylogeny to investigate spatial 
structure among sequences by comparing the evolutionary 
time and spatial separation of each pair of viruses (Figure 2). 
To mitigate sampling bias, we randomly sampled 1 sequence 
per bat roost per year, and we sampled 1 sequence per human 
case cluster. On average, each 10-year increase in evolutionary 
time was associated with a 186 km (95% CI, 161–212 km) in-
crease in spatial separation, equivalent to 19 km annually.

To provide a finer scale characterization of genetic diversity, we 
adapted a genetic clustering method, PhyCLIP, to categorize se-
quences into different genetic clusters based on the distribution 
of pairwise evolutionary distances, resulting in 15 unique clusters 
(Figure 3B). We assessed our categorization’s robustness by reim-
plementing the algorithm on 100 randomly selected posterior 
trees. We found highly consistent sequence grouping (median 
Adjusted Rand Index of 0.94, where 0 would indicate random as-
signment and 1 perfect consistency) [28]. Genetic clusters di-
verged between 1978 and 2002, with a mean evolutionary time 
from a cluster to the next-closest cluster of 15 years. Genetic clus-
ters tended to aggregate within the same country (Figure 3A, left) 
and were also separated by bat species, with 11 of the clusters 
exclusively found within single bat species (Figure 3A, center).

To investigate the spatial overlap of pteropid bat species in 
the region, we analyzed inter-roost distances (Supplementary 
Figure 4) and compared species linked to each roost. This as-
sumed all pteropid bats in any roost were of the same species. 
As many countries in the region only have 1 pteropid species, 
this is likely a reasonable assumption. We found that bat 
species were spatially structured at a country level, with 4 (67%) 

countries having sequences from a single pteropid bat species 
(Figure 3A, right). We estimated that 96.8% (95% CI, 96.4%– 
97.2%) of bat roosts separated by <100 km were of the same 
species, dropping to 53.4% (95% CI, 47.9%–58.8%) for roosts 
500–1000 km apart (Supplementary Figure 5).

We found that there were an average of 2.41 (95% CI, 1.92– 
2.94) different genetic clusters per bat roost. The probability 
that 2 sequences belonged to the same genetic cluster fell 
from 36.6% (95% CI, 30.6%–45.1%) when they were found 
within <100 km of each other to 5.7% (95% CI, 2.5%–9.7%) 
when they were 500–1000 km apart. Using logistic regression, 
we found that each additional 100 km in spatial distance 
separating roosts was associated with 0.75 (95% CI, .73–.77) 
times the odds of being part of the same genetic cluster 
(Figure 3C). As the probability of being from the same bat spe-
cies is strongly linked to the distance between locations, we 
could not disentangle the role of spatial segregation between 
lineages from being solely a spatial effect or due to the different 
Pteropus species occupying different locations. However, on 
average, we found that sequence pairs coming from the same 
bat species had 19.3 (95% CI, 15.9–23.6) times the odds of be-
longing to the same genetic cluster as pairs from different bat 
species (Figure 3D). Importantly, our characterization of the 
changing probability of being from the same genetic cluster 
as a function of distance is robust to biased observation pro-
cesses and can therefore be considered a spatial signature of 
NiV ecology. Our estimates of spatial dependence were robust 
to broad variations in the definition of a genetic cluster that re-
sults in greater or fewer clusters (Supplementary Figure 6).

We estimated the average number of genetic clusters circulating 
within an area using Approximate Bayesian Computation to fit 
our observed spatial distribution of genetic clusters (Figure 4A). 
We made a simplifying assumption that the spatial footprint 
covered by a genetic cluster is equivalent throughout the re-
gion, and that it can be captured by a multivariable normal dis-
tribution. We estimate that, on average, 95% of infections from 
a genetic cluster were found within an area of 1.3 million km2 

(95% CI, .6–2.3 million km2) and that there were an average of 
14 discrete genetic clusters per land area of 100 000 km2 

(95% CI, 6–24 km2) (Figure 4B).
We explored different approximations of the circulation area 

of Pteropus bats to estimate NiV diversity. For each country in 
the region, we used estimates of Pteropus bats’ geographic range 
from the International Union for Conservation of Nature 
(IUCN) [29], and the Global Forest Watch’s area covered by 
tree cover as an alternative, indirect marker of geographic range. 
For this second approach, we separately considered over 10%, 
30%, or 50% of tree cover as a proxy of the area covered by 
Pteropus bats (Table 1, Supplementary Figures 7 and 8) [30]. 
For most countries, we found little variation among estimates 
of diversity using these approaches. For example, in Thailand, 
we estimate 15 unique genetic clusters (95% CI, 6–26) using 

Figure 2. Mean pairwise spatial distance (in km) in function of pairwise evolu-
tionary distance (in years). The shaded area represents 95% confidence intervals 
obtained from nonparametric bootstrapping of the sequences.
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the IUCN’s geographic range, and 17 unique genetic clusters 
(95% CI, 7–29) using the area with >10% of tree cover. In 
Bangladesh, estimates ranged between 15 genetic clusters (95% 
CI, 7–29) and 11 genetic clusters (95% CI, 4–20), respectively. 

Taking South and Southeast Asia as a whole, we estimate 
between 66 and 118 separate NiV genetic clusters using the 
different approaches (range of confidence intervals: 28– 
211), compared to 15 currently detected, suggesting that 

Figure 3. A, Proportion of all sequences of each genetic cluster by the country where it was detected (left) and by the bat species from which it was found (middle). The 
right plot shows the proportion of roosts that belong to each bat species for each country. B, Time-resolved phylogeny divided into 15 distinct clades using an adapted form of 
PhyCLIP. Each color represents a different genetic cluster. C, Proportion of sequence pairs belonging to the same cluster as a function of their spatial distance. Dots represent 
median values, and error bars represent 95% bootstrap confidence intervals (CIs). The line represents the fit of a logistic model. The green shaded region represents 95% CIs 
of the model fit. D, Odds ratio of belonging to the same genetic cluster if sequence pairs were sampled from the same bat host species or not. The error bar represents 95% 
bootstrap CIs. Abbreviations: BGD, Bangladesh; IDN, Indonesia; IND, India; KHM, Cambodia; MYS, Malaysia; OR, Odds Ratio; THA, Thailand.
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approximately 80%–90% of circulating genetic clusters re-
main undetected.

Finally, we consider the extent to which genetic diversity has 
been fully uncovered in the 6 long-term established surveillance 
sites in the region (3 in Bangladesh, 2 in Thailand, and 1 in 
Cambodia), and whether there exist predictors of the estimated 
total number of genetic clusters in any one place. There have 
been between 14 and 76 sequences obtained in these sites, re-
sulting in the detection of 2–7 different genetic clusters to 
date (Figure 4C). We estimated the number of new lineages 
that would be detected with additional sampling. This ap-
proach assumes equal probability of detection and similar levels 
of circulation of all clusters within an area. It also assumes 

stability in the clusters circulating in a location over time. We 
estimated that all of the circulating genetic clusters have been 
identified in 5 of the 6 locations (Figure 4C, Supplementary 
Figure 4). The total number of clusters circulating within a sub-
national division was not significantly associated with the 
size of the study area or with human population density 
(Supplementary Figure 9A and 9B). There was some evidence 
of an increase in genetic diversity with the percentage of forest 
cover (P = .015) (Supplementary Figure 9C).

DISCUSSION

We analyzed NiV sequences, alongside host and location infor-
mation from multiple countries, to characterize the underlying 

Figure 4. A, Model fit using approximate Bayesian computation on the proportion of sequence pairs that belong to the same genetic cluster in function of their spatial 
distance. The orange dots represent the median and the lines represent the 95% confidence intervals (CIs). Median proportions calculated on Nipah virus (NiV) data and used 
to calibrate the model are represented in blue. B, Predicted number of genetic clusters in function of area (in square kilometers). The points and bars represent point estimates 
of the number of distinct genetic clusters as a function of area with 95% CIs. C, Estimated number of clusters in function of number of sampled NiV sequences for 6 regions in 
South and Southeast Asia. The dots represent the current number of observed samples and clusters in each region, the solid lines represent interpolated values based on 
observed data, and the dashed lines represent predicted values if additional sampling was conducted. Abbreviations: BGD, Bangladesh; KHM, Cambodia; NiV, Nipah virus; 
THA, Thailand.

Table 1. Estimations of the Number of Genetic Clusters for the 6 Countries Represented in Our Dataset, According to Different Estimates of Pteropus 
Range

Country

IUCN Pteropus Range Tree Cover (10% Threshold) Tree Cover (30% Threshold) Tree Cover (50% Threshold)

Area, km2
No. of Clusters 

(95% CI) Area, km2
No. of Clusters 

(95% CI) Area, km2
No. of Clusters 

(95% CI) Area, km2
No. of Clusters 

(95% CI)

India 2 987 747 55 (24–89) 490 910 23 (10–37) 388 304 21 (9–34) 304 653 19 (8–31)

Bangladesh 127 346 15 (6–25) 26 607 11 (4–20) 19 390 11 (4–20) 15 229 10 (4–19)

Thailand 138 538 15 (6–26) 219 195 17 (7–29) 199 624 17 (7–28) 179 669 16 (7–27)

Cambodia 62 957 13 (5–22) 101 985 14 (6–24) 88 099 14 (6–24) 74 823 13 (5–23)

Malaysia 323 929 20 (8–32) 297 861 19 (8–31) 294 306 19 (8–31) 289 772 19 (8–31)

Indonesia 1 656 164 40 (17–63) 1 650 987 39 (17–63) 1 606 412 39 (17–62) 1 550 634 38 (17–61)

Table shows estimations of the number of circulating genetic clusters of NiV using the IUCN’s estimations of Pteropus geographic range and the Global Forest Watch’s estimations of tree 
cover per country above thresholds of 10%, 30%, and 50%, respectively.  

Abbreviations: CI, confidence interval; IUCN, International Union for Conservation of Nature; NiV, Nipah virus.
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genetic diversity of a pathogen that poses a major risk to human 
health. We found that NiV is strongly spatially structured, with 
slow viral movement across the region and limited genetic sim-
ilarity in viruses that circulate in different countries. These 
findings are consistent with a previous analysis using data 
from Bangladesh only [31]. The evolutionary time separating 
viruses sampled in the 2 extremes of the Nipah region (ie, 
India to Malaysia) was over 140 years, suggesting substantial 
entrenchment within communities, with greatest diversity ob-
served in the central region. The extent to which the spatially 
structured nature of bat species, mixing patterns of bats across 
roosts, and preexisting immunity contribute to these observa-
tions remains unclear.

The transmission dynamics of NiV within bat populations, 
including long-term immunity after infection, remains poorly 
understood. We found substantial overlap in the spatial foot-
print of genetic clusters, to the extent that even individual bat 
roosts host >1 distinct genetic cluster. Pteropus bat roost size 
highly depends on species, typically hosting hundreds to thou-
sands of bats at a time [15, 32–34]. Maintaining a sufficiently 
large susceptible population to sustain multiple independent 
transmission chains in populations of this size likely requires 
long durations of viral shedding, frequent reinfection, or coin-
fection, as suggested through modeling of bat immune profiles 
[35]. As movement between bat roosts is common, the wider 
population across multiple roosts may also facilitate the main-
tenance of multiple lineages. In support of a key role of roost 
population size in maintaining diversity, it is notable that the 
P lylei roosts in Cambodia, which had the greatest diversity 
with the co-circulation of 3 NiV sublineages within each roost, 
typically have thousands of bats per roost, many more than oth-
er locations [15].

The evolutionary separation between NiV lineages has previ-
ously been suggested as 1 possible explanation for the differenc-
es in the case fatality rate in Bangladesh (∼70%) and Malaysia 
(∼40%) [2, 36, 37]. However, it remains difficult to disentangle 
differences in the virus from human behavior or transmission 
route differences. Spillover from bats into pigs through the con-
sumption of infected fruit drove the outbreak in Malaysia, 
whereas date palm sap consumption by humans appears key 
in Bangladesh [38]. Viral loads and inoculation routes and sites 
in these 2 transmission modes are likely to be very different, 
which could affect subsequent mortality. A primate model 
found increased fatality risk in strains of Bangladeshi origin 
as compared to Malaysian origin. However, studies on other 
animal models have provided less conclusive evidence of path-
ological or transmission differences between the 2 major clades, 
and the relevance of animal models to the human situation re-
mains unclear [39–42]. Here we found evidence of differences 
in spillover or disease risk within a lineage. Genotype IB was 
found in 3 different years in bat roosts in an area of 
Bangladesh where human spillovers are frequently identified 

and where date palm sap consumption is common. However, 
no human cases were linked to this sublineage. Year-by-year 
variability in spillover risk, linked to temperature, may explain 
these findings, especially in the context when only a subset of 
human NiV cases are ever detected and have their viruses se-
quenced [10, 12, 43].

Using genetic cluster correlation over distance as a spatial 
signature of NiV, we estimated the spatial footprint of individ-
ual clusters and the number of circulating clusters. While 
crude, these ballpark figures are a useful marker of what we 
may be missing, especially in countries with little or no sam-
pling. We estimated the presence of approximately 100 genetic 
clusters across the region, suggesting substantial undetected vi-
ral diversity (∼80%–90%). Increased sampling across South 
and Southeast Asia will help uncover additional lineages, par-
ticularly in new locations. Long-term surveillance in locations 
with established sampling remains critical to characterize the 
evolutionary dynamics of NiV within roosts. Whole-genome 
sequencing should be prioritized, where possible, to maximize 
the signal that can be captured through genomic surveillance.

Our observations of the spatial structure of NiV need to be 
taken in the context of evolving bat ecology. Deforestation 
and land use changes across the region are leading to a more 
fragmented pattern of roosts and bringing bats closer to urban 
environments [7, 10, 44]. It has been shown for the related 
Hendra virus that stress in bats is linked to spillover risk [45]. 
It remains unclear how future climate changes and deforesta-
tion could lead to further shifts in bat population distribution 
and behavior, potentially increasing stress and spillover risk.

NiV remains a major threat to human health. Our findings 
have implications for monitoring and understanding this ongo-
ing threat. We show that there is substantial undetected diver-
sity in the region, with the potential for heterogeneity in risk of 
person-to-person transmission and disease severity across 
strains. Detection of changes in these characteristics will re-
quire investment in focused and stable surveillance, particular-
ly outside Bangladesh. This is of particular importance since, 
outside Bangladesh, access to NiV testing, physician familiarity 
with the disease, and NiV disease surveillance are very limited 
[46]. Moreover, future changes in land use may heighten hu-
man exposure to NiV across the region.

This study is subject to some limitations. First, we rely on the 
few places where sequencing is conducted, which represent a 
small number of locations in 6 countries. While we used meth-
ods that minimize the impact of sampling biases, potential dif-
ferences in NiV ecology in unsampled locations cannot be 
discounted. We also could not link sequences to specific bats. 
The most common sampling method requires the collection 
of bat urine under roosts using plastic or tarpaulin sheets that 
are polymerase chain reaction (PCR) tested, making it impos-
sible to link urine to an individual bat and to ensure that mul-
tiple positive samples do not all come from the same bat. This 
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also means that most available NiV sequences from bats are 
short sequences from the PCR process. Despite their frequent 
short nature, we were still able to consistently place sequences 
in different clades. In particular, in Cambodia, where most se-
quences were very short (<400 nucleotides in length), we were 
able to identify multiple clades circulating within the same 
roosts. The classification of tips into genetic clusters necessarily 
relies on thresholds of evolutionary distance. However, in sen-
sitivity analyses, changes in these thresholds resulted in mini-
mal changes to the overall inferences on the genetic diversity 
of viruses circulating within any area. Finally, NiV sequences 
are ultimately reliant on the PCR primers used to detect the vi-
rus in the original sample. If the PCR primers are overly specif-
ic, they may systematically miss some viruses [47]. Future 
efforts may want to consider using broader primer sets.

This project has demonstrated that even sparsely sampled 
genetic data, including many short sequences, from large areas 
can provide meaningful characterization of underlying diver-
sity in populations when considered together. We have shown 
that even individual roosts typically have multiple circulating 
transmission chains but with each genetic lineage covering a 
large spatial footprint, probably driven by bat mobility patterns. 
While most NiV diversity remains undetected, the surveillance 
sites that have been established appear to have uncovered a sub-
stantial proportion of the diversity in those locations.
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