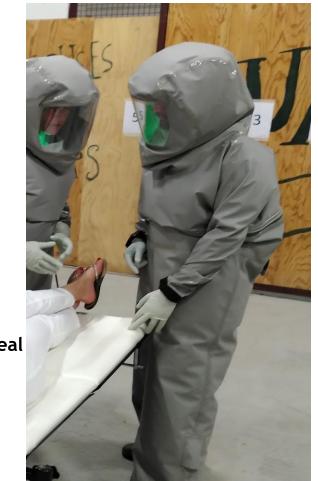


A novel personal protective equipment for filovirus outbreaks: a usability study under simulated field conditions

*Esther Sterk¹, Birgit Schramm², Eugenia Riccio¹, Martin Gabut¹, Luca Fontana³, Michel André Rochat⁴, Gregoire Castella⁴, Iza Ciglenecki¹, Iona Crumley¹, Claire Dorion¹

Introduction

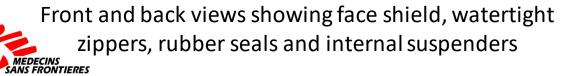
After the large **West African Ebola outbreak in 2013-2015**, the **"SmartPPE project"** was formed to address the need for an improved coverall personal protective equipment (PPE) for filovirus front-line workers


CURRENT PPE

- Too hot and inappropriate for hot and humid tropical climates
- Doffing of the PPE is time consuming
- Built-up humidity inside the suit (goggles) & reduced vision field
- Poor reusability and too expensive

SmartPPE

- One-piece suit
- Personal cooling system
- Positive pressure
- Large face shield
- No protective mask
- Immediate, watertight seal
- Fully reusable



The aim was to assess user's perceptions on the comfort/functionality of the developed prototype suit in a usability study before closure of the final product design.

Ventilator and Air System, and movement of the air around the suit.

Methods

LH / MSF

OVERALL OBJECTIVE

To assess the **usability** (ease-of-use, user comfort, work-place-functionality, and doffing-safety) of the smartPPE compared to the current PPE through user testing in a simulated field environment.

ASSESSMENTS

4 guided testing sessions representing clinical and non- clinical field tasks, performed by each participant in both Smart and Standard PPE in random order.

DATA COLLECTION

- Measurements (Vital signs, visibility and hearing, ambient temperature & humidity, CO₂ and temperature inside the suit)
- Session observations
- User feedback questionnaires

TEST USERS

N=10 (medical-/non-medical profile, different levels of front-line PPE experience)

STUDY SITE

Simulated set-up (high indoor humidity/high temperature) at UNHRD)/ WHO INITIATE² campus, Brindisi, Italy, 26th May to 3rd June 2023

ETHICS

Test users signed informed consent; study protocol approved by MSF Ethical Review Board

https://www.sciencedirect.com/science/ article/pii/S0196655318308411

Sessions 1-4, Performed twice by each test user: in current and smart PPE, with guided donning and doffing

Session 1 Movement & getting to know the suit

Activity 1 Moving & interaction with objects Activity 2 Visual range

Session 2 Medical Activities

Activity 1 Simulated medical acts Activity 2 Conversation

Session 3 Heavy physical work

Activity 1 Water Sanitation and Hygiene Activities
Activity 2 Sand shoveling
(Session 3 involved continuing activities for as long as participants were comfortable to do so, to a maximum of 1.5hr)

Session 4 Trouble shooting

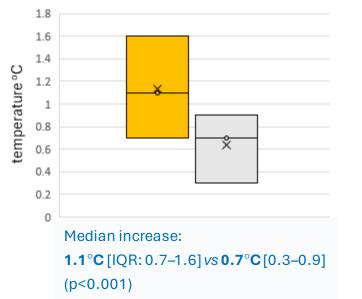
Activity 1 Incident with gloveActivity 2 Incident with liquid spillageActivity 3 Incident with faultyventilation (SmartPPE only)

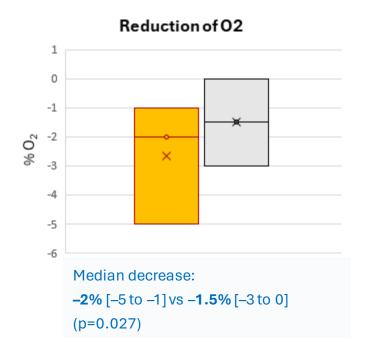
All Images LH / ER / MSF

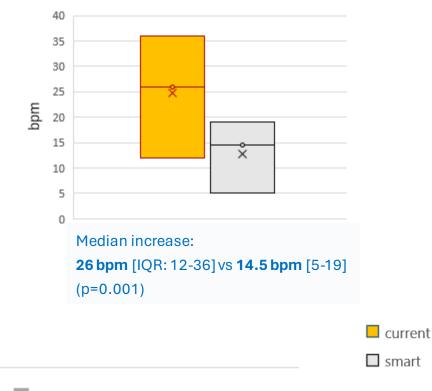
Results

Test user characteristics

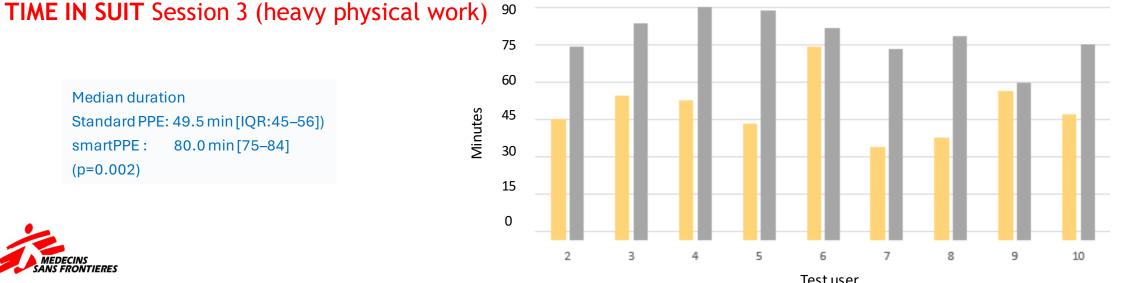
Participants	N=11*
Biometrics	Mean (min, max) % (n/N)
Female	27.3% (3/11)
Age	41.8 years (28, 53)
Height	177.3 cm (155.0, 193.0)
Weight	75.5 Kg (45.0, 95.0)
Head circumference	58.8 cm (55.0, 62.0)
Chest circumference	100.4 cm (79.0, 118.0)
Previous experience with MSF	90.9% (10/11)
Front-line profession in filovirus outbreak context	
WATSAN	45.5 (5/11)
Medical	45.5 (5/11)
Unrelated	9.0 (1/11)
Previous experience with cover-all PPE	
never	27.3 (3/11)
1-2months	36.4 (4/11)
≥ 12 months	9.1(1/11)
≥ 24 months	18.2 (2/11)
Size smart PPE suit attributed	
small	9.0(1/11)
medium	63.6 (7/11)
large	27.3 (3/11)


*N=11 people for **10 test user spots** (1 replacement)




VITALS (combined, sessions 1-3)

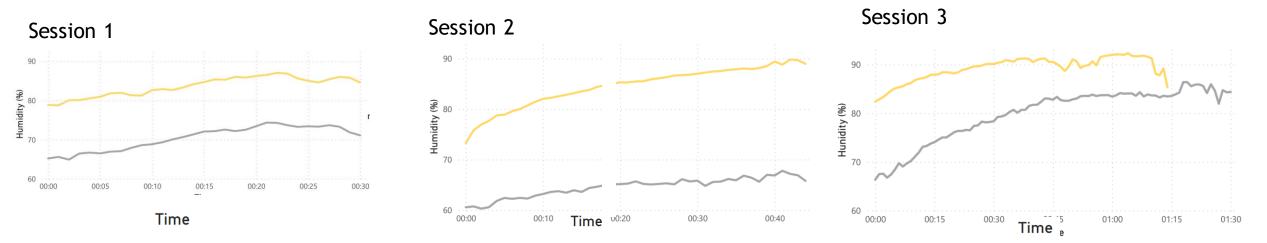
Increased body temperature



Increase of heart rate

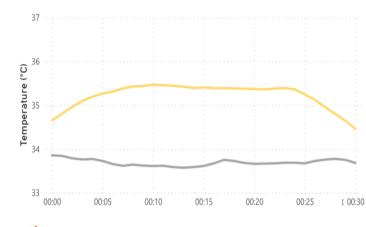
Median duration Standard PPE: 49.5 min [IQR:45–56]) smartPPE : 80.0 min [75–84] (p=0.002)

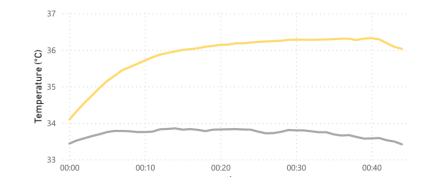
MEDECINS ANS FRONTIERES

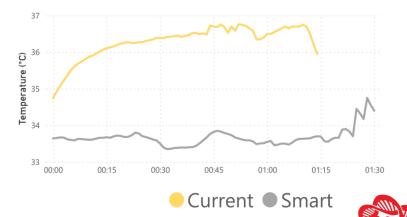


HUMIDITY inside the suit

Median 12.6 % [8.8–19.6] higher humidity in Standard PPE

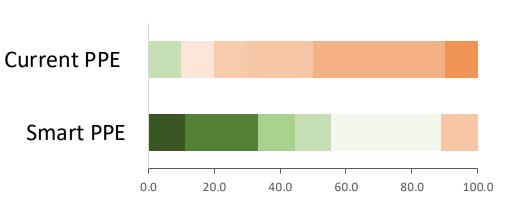

Mean room humidity: 70% Mean room temperature: 30°C




TEMPERATURE inside the suit

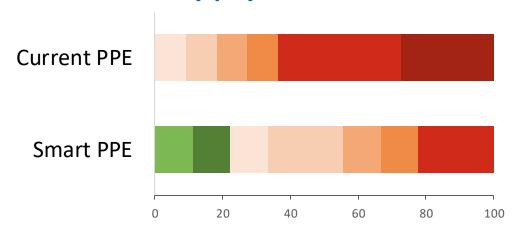
● Current ● Smart

Median 2.3°C [IQR 1.8–3.0] higher temperature in Standard PPE



PERCEIVED PHYSICAL EXERTION (Borg Scale rating)

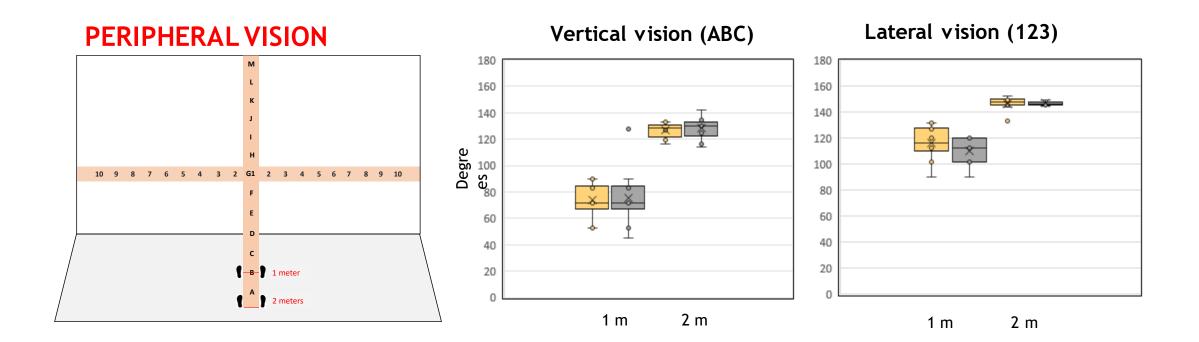
Session 2: Clinical activities



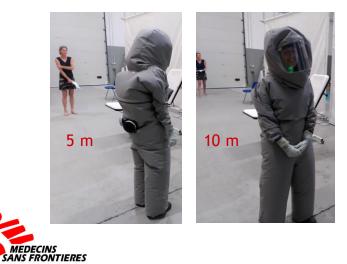
- 17-very hard
- **1**8
- 19-extremely hard
- 20-maximal exertion

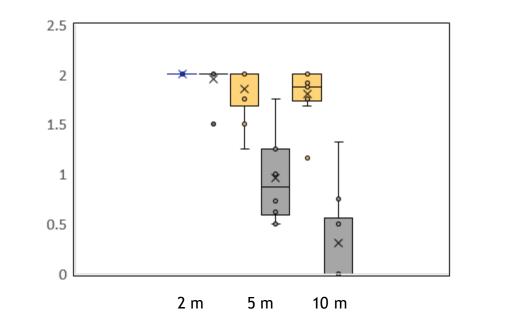
Median exertion-scores [IQR]

current PPE **15.5** [14–16] smartPPE **8.5** [7–11] (p<0.01)

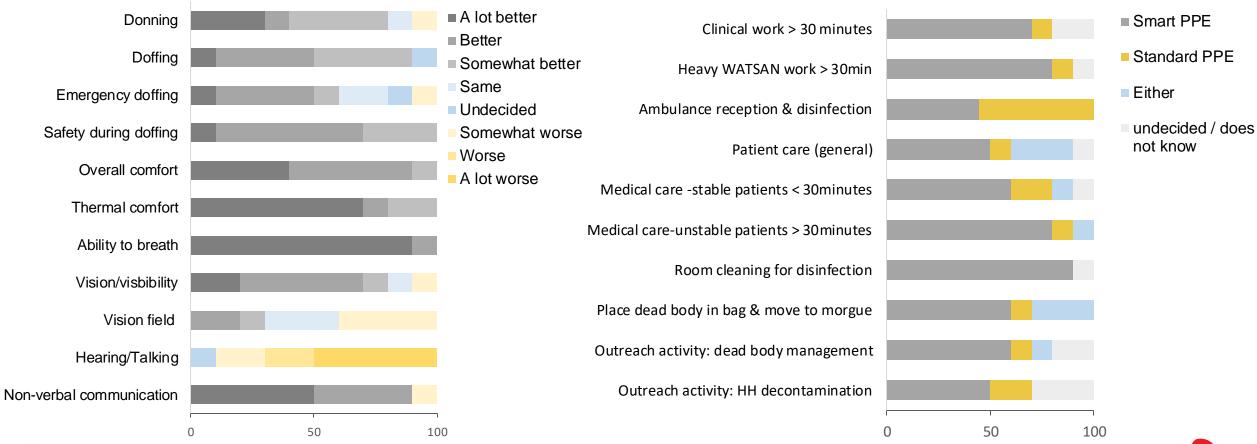


Session 3: Heavy physical activities


current PPE	18 [17–20]
smartPPE	14 [13–17]
(p=0.035)	



HEARING SCORES



COMPARATIVE TEST USER RATINGS

Preference comparison smartPPE versus current PPE

Taks-specific PPE preference (envisioned)

% test user

REULTS - RECOMMENDATIONS/FEEDBACK

HEADGEAR

Headgear: add a chin strap to better secure the helmet

Visor clipping: use a different colour clip/tap for better visualisation

VENTILATION

Noise: add a filter to reduce the noise; place the arrival of the air far from ears

Ventilation fixation: add a security (lock /screw)
Ventilation incident: add a zipper near the head to ease breathing in case of ventilation problem
Battery: add an indicator/monitor showing battery charge

VISION

Peripheral vision: move tabs few centimetres to the back to allow a wider view

BODY FIT

Size: smaller size

Arms: more tissue in the armpit for improving the movement

Pants:

- Have shorter legs
- Have the cord outside to improve the access to the cord system for tighten and untighten the legs
- Add air valves at the pants

Suspenders: add a chest strap strip between the suspenders

MOBILITY

Ventilation alarm: solve the obstruction to airflow when bending

LIMITATIONS

- Simulated conditions instead of field conditions and absence of stress related to a haemorrhagic fever epidemics
- SmartPPE donning and doffing protocols adapted several times during the study
- Limited diversity of participants as they came from Europe and North America and were mostly men while most filovirus epidemics takes place in Africa where health care workers are mostly locals

CONCLUSIONS

- Improved personal protective equipment for front-line health workers in hemorrhagic fever outbreak context is urgently needed. The Smart PPE development project addressed this gap.
- Test users confirmed the usability of smartPPE and favoured it especially for perceived lessened physical effort and exhaustion during activities, doffing-safety, longer-interval clinical or physical work, and improved non-verbal interactions, whereas hearing was challenged by the ventilation

NEXT STEPS

- Adjustments are currently underway before design freeze.
- Stakeholder commitment will be crucial to ensure production at scale.

Acknowledgements and Thanks

SmartPPE Project

ERNST GÖHNER STIFTUNG

Usability Study

Claire Dorian (MSF OCG) Esther Sterk (MSF OCG) Birgit Schramm (Epicentre) Iona Crumley (MSF OCG) Michel Andre Rocha (EPFL) Abiy Tamrat (MSF OCG) Philip Janssens (MSF OCG) Iza Ciglenecki (MSF OCG) Malcolm Townsend (MSF OCG) Corinne Heaume, MSF OCG Eugenia Riccio (MSF OCG) Martin Gabut (MSF OCG) Luca Fontana (MSF OCG) Anne Astruc (MSF OCG) Laurence Hoenig (MSF OCG)

The UNHRD WFP Onsite Team in Brindisi

Ernst Gohner Stifting for their support to the project Participants for their time and dedication to the project

