

Photo credit: Emilio Floris

Predicting Clinical Outcomes in Visceral Leishmaniasis

James Wilson

Infectious Diseases Data Observatory
Oxford Centre for Tropical Medicine and Global Health
University of Oxford

Clinical case

- 30-year-old, Northern Ethiopia
- 4 weeks intermittent fever, weight loss
- Febrile, tachycardic, splenomegaly
- Malaria negative, HIV negative
- rK39 rapid diagnostic test positive
- Haemoglobin 6.5 g/dL

Photo credit: DNDi. (Otieno) 2019

What do you do?

What is a prediction model?

"... a mathematical equation that relates multiple predictors for a particular individual to the probability of or risk for the presence (diagnosis) or future occurrence (prognosis) of a particular outcome" [TRIPOD, 2015]

Why?

- Risk stratification
- Guideline development
- Research

Sodium Stibogluconate (SSG) & Paromomycin Combination Compared to SSG for Visceral Leishmaniasis in East Africa: A Randomised Controlled Trial Am. J. Trop. Med. Hyg., 101(4), 2019, pp. 795–798 doi:10.4269/ajtmh.19-0179 Copyright © 2019 by The American Society of Tropical Medicine and Hygiene

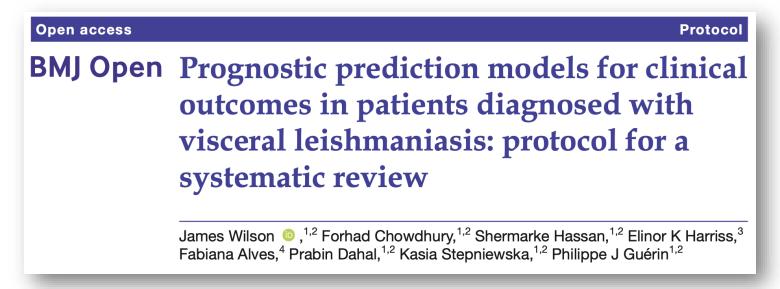
Effectiveness of Single-Dose Liposomal Amphotericin B in Visceral Leishmaniasis in Bihar

Shyam Sundar, ¹* Anup Singh, ¹ Neha Agrawal, ² and Jaya Chakravarty ¹

Institute of Medical Sciences, Banaras Hindu University, Varanasi, India; ²Temple University, Philadelphia, Pennsylvania

RESEARCH ARTICLE

Efficacy and safety of available treatments for visceral leishmaniasis in Brazil: A multicenter, randomized, open label trial

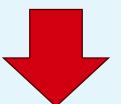


Efficacy and Safety of Amphotericin B Emulsion versus Liposomal Formulation in Indian Patients with Visceral Leishmaniasis: A Randomized, Open-Label Study

Identifying gaps in evidence

Aim

To identify, appraise and compare all models predicting VL outcomes


Methods

- No restriction on language or date of publication
- Including all models predicting any future clinical outcome
- Excluding: abstracts, educational works, guidelines

How do you assess a prediction model?

Population used for testing model?

Applicability

Performance

Model result

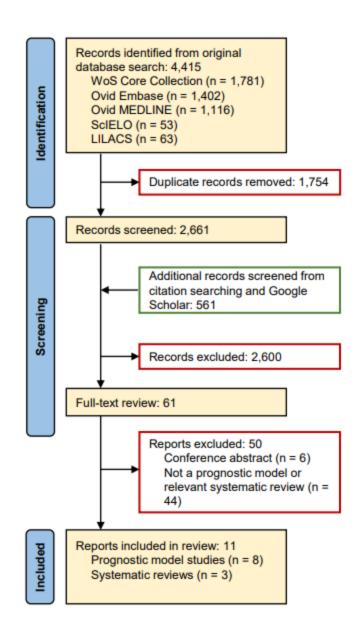
• 20% mortality risk over 1 month

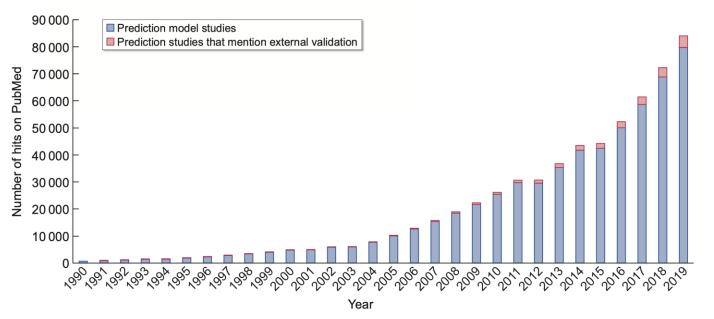
Discrimination

 Ability to discriminate between patients who die and patients who survive

Calibration

 How trustworthy is the estimate of 20% mortality?





Results

- 8 studies identified
 - 12 model developments
 - 19 external validations
- Outcome: always mortality
- Location
 - **East Africa**: 2 studies reporting 3 models
 - Brazil: 6 studies reporting 9 models
- Risk of bias: high for all models
 - Small sample sizes
 - Risk scores not reproducible
- All models reported discrimination
- No models reported calibration

Ramspek CL, Jager KJ, Dekker FW, Zoccali C, van Diepen M. External validation of prognostic models: what, why, how, when and where? Clin Kidney J. 2020 Nov 24;14(1):49-58

Disease	# of models	Reference
COVID-19	606	Wynants, 2022
COPD prognostic	408	Bellou, 2019
Cardiovascular disease	363	Damen, 2016
Obstetrics prognosis	263	Kleinrouweler, 2016
Pulmonary TB prognosis	37	Peetluk, 2021
Malaria prognosis	27	Njim, 2019
Bacterial meningitis diagnosis	17	van Zeggeren, 2022

What's next?

Predicting relapse in the Indian subcontinent

Summary

- Prediction models are important!
- IDDO VL data repository
- Systematic review of VL prediction models
- High risk of bias limits model interpretation
- Currently developing a prognostic model for VL relapse in the Indian Subcontinent

Dr D. Pandey/WHO India. Indoor residual spraying for vector control in a high kala-azar endemic village.

Thank you!

All our collaborators and colleagues from around the world!

- Data curation team
- Prof Philippe Guérin
- Dr Prabin Dahal
- **Prof Ahmed Musa**

♣ Follow this preprint

Prognostic Models Predicting Clinical Outcomes in Patients Diagnosed with Visceral Leishmaniasis: A Systematic Review

D James P Wilson, Forhad Chowdhury, Shermarke Hassan, Eli Harriss, Fabiana Alves, Ahmed Musa, Prabin Dahal, Kasia Stepniewska, Philippe J Guérin

doi: https://doi.org/10.1101/2024.03.20.24304622

This article is a preprint and has not been peer-reviewed [what does this mean?]. It reports new medical research that has yet to be evaluated and so should not be used to guide clinical practice.

Extra slides

Age group 19 years and above: Adults

ВМІ		Age)	Hb		
Cut-off	Score	Cut-off	Score	Cut-off	Score	
over 16	0	below 30 yrs	0	over 8 g/dl	0	
14 - 16	1	30 - 39 yrs	1	6 - 8 g/dl	1	

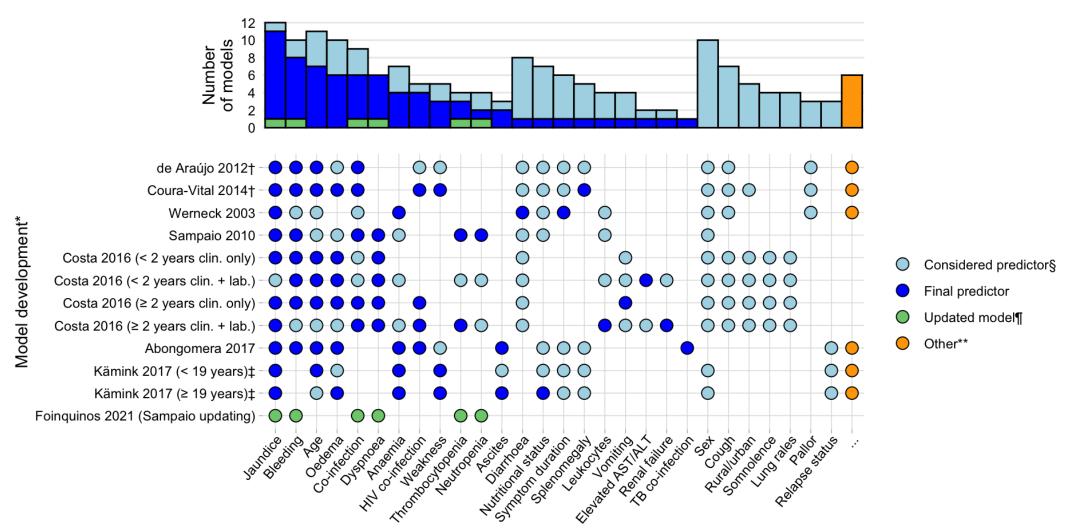
Age group below 19 years: Children & Adolescents

W/H Z-score		Age	9	Hb				
Cut-off	Score	Cut-off	Score	Cut-off	Score			
-2 and above	0	above 5 yrs	0	over 8 g/dl	0			
<-2	1	2 - 5 yrs	1	6 - 8 g/dl	1			
<-3	2	1 - 2 yrs	3	4 - 6 g/dl	2			
<-4	3	below 1 yr	4	below 4 g/dl	4			
13 - 13.9	2	40 - 44 yrs	3	4 - 6 g/dl	2			
12 - 12.9	3	45 yrs and above	5	below 4 g/dl	4			
below 12	4							

Level of weakness

State of collapse = score 5

- Definition of collapse in adults/older children: unable to sit up unaided AND cannot drink unaided
- Definition of collapse in babies: floppy when held in arms AND unable to feed unaided


Severely weak = score 3

- Definition of severe weakness in adults/older children: cannot walk 5 m without assistance
- Definition of severe weakness in babies: unable to sit upright unaided

Other types of weakness = score 0

Systematic review results

Study	Model described	Data Source	Location	Age criteria	Age	% Male	% HIV	Events*	Predictors†	EPP
			Years	Diagnostic criteria	Spread		positive	Sample size (%)	Final, Candidate	
Outcome: Registry-reported mortality										
de Araújo 2012 (33)		Registry	Brazil (Belo Horizonte) 2007-09	susp. and conf.	-	-	-	49 376 (13.0%)	4, 48	1.0
Coura-Vital 2014 (20)		Registry	Brazil (Nationwide) 2007-11	- conf.	1	61.7%	7.0%	770 12,333 (6.2%)	12 , (29)	(26.6)
Outcome: In-hospital m	ortality									
Werneck 2003 (21)	-	Case-control	Brazil (Teresina) - (< 2003)	- lab.	Mean: 14.2yrs	68.9%	-	12 90 (13.3%)	4, (15)	(0.8)
Sampaio 2010 (34)		Retrospective	Brazil (Recife) 1996-2006	< 15 years lab. or clin.	Median: 3.2yrs Range: 4m-13.7yrs	50.4%		57 546 (10.4%)	6, (15)	(3.8)
Costa 2016 (14)	< 2 years, clin. only	Prospective	Brazil (Teresina) 2005-08	< 2 years lab. and clin.		-	-	-§ 314 (-%)	6, (25)	(0.9)
	< 2 years, clin. + lab.	Prospective	Brazil (Teresina) 2005-08	< 2 years lab. and clin.				-§ 291 (-%)	6, (31)	(0.7)
	≥ 2 years, clin. only	Prospective	Brazil (Teresina) 2005-08	≥ 2 years lab. and clin.				-§ 569 (-%)	9, (27)	(1.6)
	≥ 2 years, clin. + lab.	Prospective	Brazil (Teresina) 2005-08	≥ 2 years lab. and clin.				-§ 538 (-%)	9, (33)	(1.2)
Abongomera 2017 (13)		Retrospective	Ethiopia (Abdurafi) 2008-13	lab. and clin.	Median: 23yrs IQR: 20-28yrs	95.9%	19.3%	99 1,686 (5.9%)	8, 16	6.2
Kämink 2017 (35)	< 19 years	Retrospective	South Sudan (Lankien) 2013-15	< 19 years lab. and clin.	1	54.2%	excl.	116 4,931 (2.4%)	8, 20	5.8
	≥ 19 years	Retrospective	South Sudan (Lankien) 2013-15	≥ 19 years lab. and clin.	1	56.2%	excl.	70 1,702 (4.1%)	8, 21	3.3
Foinquinos 2021 (36)	Sampaio updating	Retrospective	Brazil (Recife) 2008-18	< 15 years lab. or clin.	-	48.7%		10 156 (6.4%)**	1, 1	10.0

Table 2: Key characteristics on the 12 prognostic model developments, ordered by outcome and year published. Each row corresponds to a different model.

[‡]Number of candidate predictors unclear. Numbers presented are inferred from the study description of extracted information and baseline characteristics. §Number of events not disaggregated by model.

^{**}Sample size excludes both participants with missing predictors and missing/excluded outcomes

^{*}Including patients with missing predictor information, excluding patients with missing/excluded outcomes (unless otherwise stated).

[†]Number of predictor parameters (degrees of freedom); for example, a binary or linear predictor is described with 1 parameter; a predictor with 4 categories is described with 3 parameters. Candidate predictors presented in brackets are estimated from incomplete reporting.

Study	Model described	Model presentation and reproducibility Model pe			Model performance (odel performance (c-statistic)*			Risk of bias assessment**				
	Name	Risk score presented?	Outcome risk presented?	Risk score reproducible?	Full model presented?	Internal validation (95% CI)	External validation (95% CI)	Evaluation type	n P	Pr	0	Α	OA
Outcome: Registry-repo	orted mortality												
de Araújo 2012 (33)		Y	N	Y	N	0.756		dev	+	+	?	+	+
Coura-Vital 2014 (20)	-	Υ	Υ	Υ	Υ	0.80 (0.78-0.82) 0.78 (0.75-0.82)†		dev	+	+	?	+	+
Outcome: In-hospital m	ortality												
Werneck 2003 (21)		Y	N	Y	N	0.882		dev	+	+	-	+	+
Sampaio 2010 (34)		Υ	N	N	N‡	0.895		dev	+	+		+	+
Costa 2016 (14)	< 2 years, clin. only	Υ	Υ	N	N	0.90 (0.84-0.97)	0.83 (0.64-1) 0.86 (0.74-0.98)	dev val (x2)	:	:	:	++	+
	< 2 years, clin. + lab.	Υ	Υ	N	N	0.93 (0.88-0.98)	0.80 (0.57-1) 0.92 (0.84-1)	dev val (x2)			:	++	+
	≥ 2 years, clin. only	Υ	Υ	N	N	0.89 (0.84-0.93)	0.75 (0.68-0.83) 0.88 (0.83-0.93)	dev val (x2)	:	:	:	++	+
	≥ 2 years, clin. + lab.	Υ	Υ	N	N	0.92 (0.88-0.96)	0.79 (0.62-0.96) 0.71 (0.34-1)	dev val (x2)			:	++	++
	Werneck 2003	n/a	n/a	n/a	n/a	n/a	0.75	val	?	-		+	+
	Sampaio 2010	n/a	n/a	n/a	n/a	n/a	0.87	val	?	-		+	+
	Coura-Vital 2014	n/a	n/a	n/a	n/a	n/a	0.77	val	?			+	+
Abongomera 2017 (13)		Υ	Υ	Υ	N	0.83 (0.79-0.87) 0.82 (0.77-0.88)§	0.78 (0.72-0.83)	dev val (x1)	++		:	++	+
Kämink 2017 (35)	< 19 years	Y	Υ	Y	N	0.83 (0.78-0.87)	0.72, 0.83, 0.77	dev val (x3)	++	++	- ?	++	+
	≥ 19 years	Υ	Υ	Υ	N	0.74 (0.68-0.81)	0.72, 0.80, 0.71	dev val (x3)	++	++	?	++	+
Foinquinos 2021 (36)	Sampaio updating	Y	N	N	Y	0.556 0.762 (0.662-0.901)¶		dev	+	+	-	+	+
	Sampaio 2010	n/a	n/a	n/a	n/a	n/a	0.618	val	+	+		+	+

Table 3: Summary of model presentations and reproducibility for model developments. Performance estimates and risk of bias assessment is presented for both model development (including updating) and external validations.

*All internal validation c-statistics relate to the apparent performance of the risk score, i.e. not adjusted for overfitting, unless otherwise stated. 95% confidence intervals are reproduced when reported. Models receiving multiple external validations report multiple c-statistics.

the external validations were assessed as having the same risk of bias across all categories and are therefore presented together.

†Split-sample (random, 2:1 development:validation).

‡Full regression equation subsequently reported by Foinquinos et al, 2021, when presenting external validation.

§Cross-validation (5-fold).

¶Assessing performance of the full model equation.

**Assessment of risk of bias is performed separately for model developments, including updating, and external validations. For every model that received more than one external validation,

+, high risk of bias; -, low risk of bias; ?, unclear risk of bias; -, not reported; c-statistic, concordance-statistic; CI, confidence interval; dev: development; n/a, not applicable for external validations only; N, no; O, outcome; OA, overall assessment; P, participants; Pr, predictors; val, validation; Y, yes.

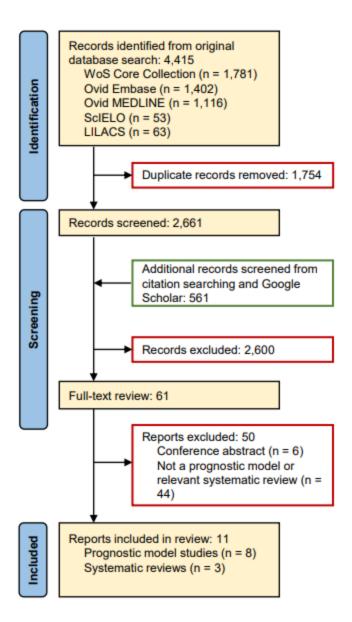


Figure 1: Flow diagram of literature search performed on March 1st 2023, and subsequent record screening.

RESEARCH ARTICLE

Development and external validation of a clinical prognostic score for death in visceral leishmaniasis patients in a high HIV coinfection burden area in Ethiopia

Charles Abongomera^{1,2}*, Koert Ritmeijer³, Florian Vogt², Jozefien Buyze², Zelalem Mekonnen¹, Henok Admassu¹, Robert Colebunders², Rezika Mohammed⁴, Lutgarde Lynen², Ermias Diro⁴, Johan van Griensven²

1 Médecins Sans Frontières, Abdurafi, Ethiopia, 2 Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium, 3 Public Health Department, Médecins Sans Frontières, Amsterdam, The Netherlands, 4 Department of Internal Medicine, University of Gondar, Gondar, Ethiopia

