

Antibiogo as an innovative solution to detect antimicrobial resistance: from an operational need to a CE-marked diagnostic test available for low-income and middle-income countries

Dr Nada MALOU

Antibiogo program manager and clinical lead

Delphine Rapoud, Estee Cramer, Mai Al Asmar, Fatoumata Sagara, Babacar Ndiaye, Yakhya Dieye, Andrew Lover, Nada Malou

Conflict of Interest: The author has declared no conflict of interest.

Antimicrobial Resistance: the invisible threat

1.29 millions deaths in 2019. (Murray et al 2022)

Acces to Bacteriological diagnostic

100% MSF labs from scratch: Yemen, Gaza, Amman, Mali, CAR, Liberia

Assessment of local laboratories+support: Iraq, North Yemen, Lebanon, Gaza, Bengladesh, Pakistan, Afghanistan...

Always same observation: Absence of interpretation

FRONTIERES

Observation confirmed in 2022: 400 years of training in sub sahara Africa

(Lancet. Fleming and al; 2021)

Diagnostic of bacterial infections and Antimicrobial Suceptibility Testing (AST)

Diagnostic of bacterial infections and Antimicrobial Suceptibility Testing (AST)

Diagnostic of bacterial infections and Antimicrobial Suceptibility Testing (AST)

Second step:Interpretattion and application of expert rules

Antibiogo

Smartphone based application, Free, Offline and open source, supports laboratory technicians to read and interpret antibiograms

Take picture

- □ Image processing+ AI: semi automatic measurement of IZD
- **Expert system: Application of Breakpoint and Expert rules**
- □ Identification of resistance mechanism
- □ IPC alert in case of MDR
- **Q** Results with comments to lab tech and clinicians
- **Extrapolation to Antibiotics not tested**
- Possibility of sending report for approval by external microbiologist

Antibiogo

Smartphone based application, Free, Offline and open source, supports laboratory technicians to read and interpret antibiograms

Antibiogo is not an App, it is a Software as medical device

Creation of technical documentation

□ Creation of quality Management System as per ISO 13485

Clinical evaluation as per EU Directive and regulation for medical devices

Clinical evaluation of performances as per EU In Vitro Diagnostic directives and regulation

Evaluation in >= 3 clinical sites

- With > 300 clinical isolates: majority of fresh (7 days) + recent (<12 months) isolates, complemented if necessary with stock isolates (> 12 months)
- AST preparation & reading following EUCAST/CLSI guidelines (bacteria isolation, identification, antibiotic panels, antibiotic position on the plates, timing, etc.)
- Internal Quality Controls weekly (manual & with Antibiogo) with reference strains (ATCC) (disc diffusion & MIC)
- Antibiogo Quality Checks daily
- Repeatability & Reproducibility testing prior to enrolment of clinical isolates

MSF pediatric project Koutiala (Mali)

MSF Reconstructive project Amman (Jordan)

Pasteur Institute ,Dakar (Senegal)

Antibiogo Clinical evaluation as per of EU IVD

Methodology

Classification of disagreement

Antibiogo Clinical evaluation as per of EU IVDD

Tissue Iselate	#	Total # is alatas			
TISSUE ISOlate	Jordan	Mali	Senegal	iotal # isolates	
Urine	2 (1%)	47 (32%)	100 (67%)	149	
Blood culture	-	114 (100%)	-	114	
CSF	-	9 (100%)	-	9	
Pus	-	7 (58%)	5 (42%)	12	
Ear swabs	-	-	4 (100%)	4	
Vaginal swabs	-	-	23 (100%)	23	
Sputum	-	-	6 (100%)	6	
Tissue	46 (100%)	-	-	46	
Bones	91 (100%)	_	_	91	
Total	139 (31%)	177 (39%)	138 (38%)	454	

Is plated pathogon/gonora	# is olates		Total	
isolated pathogen/genera	Site 1	Site 2	Site 3	TOtal
*Staphylococcus aure us	33	13	6	52
Coagulase negative staphylococcus				
	32	1	3	36
(including Staphylococcus epidermidis)				
Es che richia coli	6	51	52	109
Klebsiella pneumoniae	7	7	17	31
Klebsiella oxytoca	1	-	-	1
Klebsiella aerogenes	2	-	-	2
*Enterobacter cloacae	2	4	3	9
Proteus (mirabilis, species)	9	-	3	12
Ci trobacter freundii	2	-	1	3
Ci trobacter koseri	1	-	1	2
Serratia marcescens	5	-	-	5
Morga nella morganii	-	-	3	3
Salmonella (typhii, species)	-	21	-	21
Shigella species	-	1	-	1
Providencia (rettgeri, stuartii)	-	1	1	2
*Pseudomonasaeruginosa	32	5	11	48
Ps e u do mo nas fl uroscenes	1	-	-	1
*Acinetobacter baumanii	1	4	-	5
Acinetobacterlwoffi	1	-	-	1
Pseudomonasmendocina	-	-	1	1
Enterococcus fecalis	-	10	1	11
*Enterococcus faecium	-	-	-	0
Enterococcus species	2	23	3	28
*Haemophilus (influenzae, species)	-	18	5	23
*Streptococcus pneumoniae	-	18	-	18
Others	-	-	26	29
Total Isolates	139	177	138	454

Antibiogo clinical evaluation Overall concordance: Major and VM Disagreement

		Microbiologist interpretation		Total	
		R	I (S, HE)	S	TOLAT
Antibiogo	R	1980	70	42	2092
Interpretation	I (S <i>,</i> HE)	3	418	369	790
	S	5	74	2082	2161
Total		1988	562	2493	5043
Category Agreement		89,8%			
N Major Discrepancy (MD)		42			
% MD		1.6%			
N Very Major Di	screpancy	(VMD)	5		
% VMD		0.25%			
Weighted Kappa 0.84 (95% CI: 0.83-0.84)		4)			

ISO recquirment: <3% VMD and MD

Concordance, (S, R, I)				
Species	<pre># pathogen-antibiotic</pre>	% agreement	Kappa (95% CI)	
Staphylococcus aureus	708	96.19	0.92 (0.88–0.95)	
Proteus mirabilis	194	87.63	0.79 (0.71-0.86)	
Klebsiella pneumoniae	502	88.65	0.80 (0.76 – 0.85)	
Coagulase negative Staphylococcus	351	96.58	0.93 (0.90-0.97)	
Escherichia coli	1957	90.04	0.84 (0.81-0.86)	
Enterococcus sp	116	93.10	0.86 (0.77-0.95)	
Pseudomonas aeruginosa	607	67.05	0.50 (0.45 – 0.56)	
Haemophilus influenzae	154	98.05	0.96 (0.92 – 1.00)	
Streptococcus pneumoniae	106	93.40	0.88 (0.79–0.96)	
Salmonella sp	302	91.72	0.79 (0.71–0.87)	
Enterococcus faecalis	46	89.13	0.76 (0.57 – 0.95)	

Acinetobacter baumanii, Other enterobacteria including Enterobacter, Citrobacter and Serratia under evauation in Laos and Kenya

□ Majority of disagreement: minor especially with the introduction of S, IE category in 2019

CE mark: greenlight for routine use Sept 2022

- □ Implementation by an Antibiogo team member
- □ 5 days training: 2 hours Antibiogo/ the rest, Good AST practices: media, QC, measurments
- □ Exemple of Yemen: reluctance. Fear from the blax box
- □ Qualitative survey: post implementation + 3 months later

Antibiogo: first national scale up MALI: Sept 2023

Bamako:

Point G Hôpital du Mali Hôpital du Luxembourg CICM INRSP

Hôpital de Sikasso

Hôpital de Ségou

- 7 hospitals: between Sept-Nov 23
- □ Low ressources needed
- Identification of major
 AMR gaps at national
 level
- Reinforcment of OCP mission position on AMR in Mali

After one year of routine use in MSF hospitals, ready for scale up

Cameroon: 7 labs

- CAR: 3 labs
- Ivory Coast: 20
- Liberia: 4

20, AVENUE APPIA - CH-1211 GENEVA 27 - SWITZERLAND - TEL CENTRAL +41 22 791 2111 - FAX CENTRAL +41 22 791 3111 - WWW JIHO INT

Tel. direct: +41 22 791 1239 E-mail : techinnovation@who int

In reply please refer to: CIHTLRS24 - 62

28 March 2024

Dear Nada Malou,

Thank you for your submission of "62_Antimicrobial Susceptibility testing" to the 2024 WHO Compendium of Innovative Health Technologies for Low-Resource Settings ("2024 Compendium"). A thorough assessment was performed, considering all the documentation you provided.

We are delighted to inform you that your submission has been approved for inclusion in the 2024 Compendium as a prototype newly commercialized.

Please find attached the WHO assessment report of your innovation, which includes a summary of your submitted information and the WHO evaluation results. Should you identify any errors in the report please **notify us by Tuesday April 2**, **2024**, **COB**. We will assume everything is in order if we do not receive a response within the timeframe. This document is only for your consideration and should not be disseminated. We will notify you of the final plabilication date of the

In parallel to the scale up: development of new features: surveillance and training

European Society of Clinical Microbiology and Infectious Diseases: EUCAST validation of Antibiogo

In parallel to the scale up: development of new features: surveillance and training

European Society of Clinical Microbiology and Infectious Diseases: EUCAST validation of Antibiogo

Antibiogo

Antibiogo, In 2025

□ Antibiogo available on the play store for free access by LMIC laboratories

- □ Self training tools available on website for a plug and play
- Not anymore a project but a medical devices used in routine for patients management
- Identification of optimal organization and set up to manage scale up and sustainable funding

Lessons learned from Antibiogo: Digital health tools revolution: from LMIC, by LMIC for LMIC

- □ Health centric and Not technology centric
- Data protection and data Ownership
- □ Human autonomy and capacity building
- □ Safety, effectiveness and transparency

- □ Responsive and Sustainable digital tool
- □ Affordability

Thank you

AP-HP. Hôpitaux universitaires Henri-Mondor

Laboratoire de Mathématiques et Modélisation d'Évry

MSF Koutiala Project

- Fatoumata Sagara
- Adama Traore

MSF RSP

- Mai al Asmar
- Dr Rasheed el Fekhri

Pasteur Institute Dakar

Babacar Ndiaye

Antibiogo team

- Delphine Rapoud
- □ Vanessa Lalouelle
- Luma Kilani
- Celia Barberousse
- □ Andrew lover

Antibiogo webinar June 5 th : 2 to 4 pm

Liqu Join us for a special webinar event June 5th 2PM CET Online - in French & English

Antibiogo, your next partner against antibiotics resistance, is going live.

Open in web browser / Ouvrir dans le navigateu

Invitation en Français ci-dessous

Dear Colleagues,

Today, we are proud to announce the upcoming launch of Antibiogo, a free diagnostics tool that will support labs everywhere in **delivering fast, secure and precise Antibiotic Susceptibility Testing (AST)**. Antibiogo isn't just another digital health tool – it's a user-friendly, CE certified, and designed for low income settings solution in order to make a tangible impact in the fight against Antimicrobial Resistance (AMR).

Join us on 5th June for an exclusive webinar where we'll dive deep into the real-world applications and years of research that went into making Antibiogo.

What to expect

- Discover Antibiogo in Action: Experience a live demo showcasing how Antibiogo is transforming the landscape of AST interpretation.
- Insights from Experts: Gain valuable insights from external presentations by leading health and AMR actors, including testimonials from users who have witnessed the transformative power of Antibiogo firsthand.
- Scale Up and Access: Discover and discuss with Antibiogo team about scale up strategy and availability in LMIC laboratories in 2024 and 2025.

