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Background: Tuberculosis (TB) is a global health challenge and one of the leading causes of death
worldwide. In the last decade, the TB treatment landscape has dramatically changed. After long years of
stagnation, new compounds entered the market (bedaquiline, delamanid, and pretomanid) and phase III
clinical trials have shown promising results towards shortening duration of treatment for both drug-
susceptible (Study 31/A5349, TRUNCATE-TB, and SHINE) and drug-resistant TB (STREAM, NiX-TB,
ZeNix, and TB-PRACTECAL). Dose optimization of rifamycins and repurposed drugs has also brought
hopes of further development of safe and effective regimens. Consequently, international and WHO
clinical guidelines have been updated multiple times in the last years to keep pace with these advances.
Objectives: This narrative review aims to summarize the state-of-the-art on treatment of drug-
susceptible and drug-resistant TB, as well as recent trial results and an overview of ongoing clinical trials.
Sources: A non-systematic literature review was conducted in PubMed and MEDLINE, focusing on the
treatment of TB. Ongoing clinical trials were listed according to the authors' knowledge and completed
consulting clinicaltrials.gov and other publicly available websites (www.resisttb.org/clinical-trials-
progress-report, www.newtbdrugs.org/pipeline/trials).
Content: This review summarizes the recent, major changes in the landscape for drug-susceptible and
drug-resistant treatment, with a specific focus on their potential impact on patient outcomes and pro-
grammatic TB management. Moreover, insights in host-directed therapies, and advances in pharmaco-
kinetics and pharmacogenomics are discussed. A thorough outline of ongoing therapeutic clinical trials is
presented, highlighting different approaches and goals in current TB clinical research.
Implications: Future research should be directed to individualize regimens and protect these recent
breakthroughs by preventing and identifying the selection of drug resistance and providing widespread,
affordable, patient-centred access to new treatment options for all people affected by TB. Ilaria Motta,
Clin Microbiol Infect 2024;30:1107
© 2023 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All

rights reserved.
Introduction

Tuberculosis (TB) remains a global health challenge, with an
estimated incidence of 10.6 million new cases occurring in 2021,
according to the 2022 WHO Global TB Report [1]. The incidence of
multidrug-resistant/rifampicin-resistant TB (MDR/RR-TB) is
increasing, with an estimated 450 000 new cases in 2021.

Existing treatments for drug-susceptible (DS) and drug-
resistant (DR) TB for adults and children have saved millions of
lives. However, TB is still a leading infectious cause of death with 1.6
million deaths (including 187 000 people livingwith HIV) occurring
in 2021, and in the near future could replace again COVID-19 as the
leading cause of death by a single infectious agent [1].

Recent therapeutic advances have dramatically renewed the
landscape for DS- and DR-TB treatment. This review aims to high-
light these major changes and their potential impact on patient
outcomes and programmatic TB management.

Treatment of drug-susceptible TB

For much of the last 50 years, DS-TB has been treated with the
so-called ‘short-course chemotherapy’ regimen. Administered over
6 months, the regimen was the result of a series of clinical trials
conducted between 1946 and 1986 by the British Medical Research
Council [2]. These trials demonstrated that an ‘intensive’ phase of
2 months of rifampicin, isoniazid, and pyrazinamide, followed by a
‘continuation’ phase of 4 months of rifampicin and isoniazid, could
cure most patients. Pyrazinamide was added to the regimen in the
intensive phase to permit treatment shortening from 9 to 6 months
[2]. This ‘one-size-fits-all’ regimen subsequently became the global
standard, recommended for treating all forms of DS-TB.

Short-course chemotherapy has saved millions of lives, but
6 months of pill-taking challenges patients and TB treatment pro-
grammes alike. There has, therefore, been much interest in short-
ening the regimen. There were early signals that the addition of
fluoroquinolones might shorten treatment, with trials suggesting
that these drugs reduced the time-to-sterilization of sputumwhen
added to the standard therapy [3,4]. However, 3 independent phase
III trials published in 2014 showed that 4-month regimens con-
taining moxifloxacin or gatifloxacin did not meet the pre-defined
non-inferiority margins when compared with the standard 6-
month regimen [5e7]. Nonetheless, subsequent analyses of the
results of these trials have shown that specific subgroups of pa-
tients may benefit from <6 months of treatment [8,9].

Investigators turned to shorten treatment by optimizing the
pharmacokinetics of the drugs used, especially the rifamycins
(rifampicin, rifabutin, and rifapentine). Clinical studies have
confirmed that rifampicin doses up to 40 mg/kg/d were well
tolerated and increased early bactericidal activity [10], but whether
high rifampicin doses can safely shorten therapy, or improve out-
comes from TB meningitis, remains the subject of ongoing trials
(Table 1). Recent data from a large phase III trial (Study 31/A5349)
showed that rifapentineda rifamycin with a longer half-lifedused
in combinationwith isoniazid, pyrazinamide, andmoxifloxacin, can
shorten therapy to 4 months [11]. In May 2022, the WHO condi-
tionally recommended that eligible persons aged �12 years with
pulmonary DS-TB may receive this 4-month regimen [12].

A reinvigorated anti-TB drug pipeline has enabled new ap-
proaches to treatment (Table 1). A recent phase II trial compared
pretomanidda new nitroimidazoledwith either rifampicin or
rifabutin, in combination with isoniazid and pyrazinamide, against
the standard 6-month regimen [13]. The pretomanid-rifabutin
regimen induced faster bacterial killing in sputum than the other
regimens, but with more frequent hepatic adverse events, probably
because of the pretomanid/pyrazinamide combination, which may
temper the use of this combination for future DS-TB treatment [14].

It has long been recognized that there is a subset of patients,
often with less severe TB, that may be cured with <6 months of
therapy [15]. The SHINE trial showed that 16 weeks was non-
inferior to 6 months of treatment in children with DS, non-

http://clinicaltrials.gov
http://www.resisttb.org/clinical-trials-progress-report
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Table 1
Registered, unpublished clinical trials for the treatment of drug-susceptible tuberculosis (as of 6 July 2023)

Therapeutic approach Trial (adult patients
with TB)

Experimental regimen(s) Clinical trials registration Phase Status

Optimizing rifampicin IMAGINE-TBM High-dose R and H for TB meningitis NCT05382742 II In preparation
INTENSE-TBM High-dose R and high-dose Lzd for TB meningitis NCT04145258 III In preparation
ReDEFINe High-dose R for TB meningitis NCT02169882 II Enrolling
STEP2C High-dose R and Mfx for 3 or 4 mo NCT05807399 IIC Enrolling
HARVEST High-dose R for TB meningitis ISRCTN15668391 III Enrolling
SURE High-dose R, H, Z þ Lfx ( ± aspirin) for children with TB

meningitis
ISRCTN40829906 III Enrolling

RIFASHORT Higher dose R (to 1800 mg/d)d4 mo NCT0258152 III Completed
Regimens including new drugs CRUSH-TB Bdq þ Mfx þ Z þ Rbt or Dlmd4 mo NCT05766267 IIC Final preparation

DECODE 16 wk of experimental of Delpazolid at different doses
associated with Bdq þ Dlm þ Mfx

NCT04550832 II Enrolling

Safety and efficacy
of 4-mo regimen of
OPC-167832
þ Dlm þ Bdq

NCT05221502 II Enrolling

CLO-FAST
(ACTG A5362)

Cfz þ Rpt þ HZEd13e17 wk NCT04311502 IIC Enrolling

SUDOCU Bdq þ Dlm þ Mfx vs. Bdq þ Dlm þ Mfx þ Sutezolid (3
dosages)

NCT03959566 II Completed

SimpliciTB Bdq þ Pa þ Mfx þ Zd4 mo NCT03338621 III Completed

Bdq, bedaquiline; Cfz, clofazimine; Dlm, delamanid; H, isoniazid; Lfx, levofloxacin; Lzd, linezolid; Mfx, moxifloxacin; Pa, pretomanid; R, rifampicin; Rbt, rifabutin; TB,
tuberculosis; Z, pyrazinamide.
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severe, smear-negative TB [16]. The TRUNCATE-TB trial investigated
a strategy of giving 8-week treatment regimens to adults with mild
or moderately severe pulmonary TB, with the possibility to extend
treatment in thosewith poor response and retreatment for relapses
[17]. One strategy arm using an initial 8-week combination of
bedaquiline, linezolid, isoniazid, pyrazinamide, and ethambutol
met the 12% non-inferiority margin, with marked reduction in total
time on treatment, and without major safety concerns. Overall, 3
(2%) participants out of 189 in the successful strategy arm extended
regimen and 24 (13%) started a second treatment course. Two
participants in the bedaquiline-, linezolid-containing arm relapsed
with confirmed acquired phenotypic drug resistance to bedaquiline
(and clofazimine). Implementation research is needed to evaluate
the outcome of such strategy in diverse populations. Of note, the
definition of TB severity is heterogeneous among the aforemen-
tioned studies and would greatly benefit from consensus on vali-
dated criteria [8,9].
Treatment of isoniazid-resistant, rifampicin-susceptible TB

Isoniazid resistance without concurrent rifampicin resistance is
the most common type of Mycobacterium tuberculosis resistance
worldwide, present among an estimated 10.6% of all TB cases in
2019 [18]. In 2018, WHO recommended a regimen consisting of
6 months of rifampicin, ethambutol, pyrazinamide, and levo-
floxacin to treat isoniazid-resistant TB, following an individual
patient data meta-analysis containing 3923 patients with
isoniazid-resistant, rifampicin-susceptible TB, which indicated that
the addition of a fluoroquinolone, compared with 6 months of
standard treatment with or without isoniazid, increased the like-
lihood of treatment success (adjusted OR: 2.8 [95% CI: 1.1e7.3])
[12,19]. This recommendation was, however, conditional, based on
a very low certainty of evidence. In instances of noncavitary dis-
ease, low bacillary burden, or pyrazinamide toxicity, European-
American guidelines have suggested that pyrazinamide may be
given only during the first 2 months of treatment, provided the
fluoroquinolone used is later-generation [20]. Patients with fluo-
roquinolone resistance or contraindications are generally recom-
mended to be treated with rifampicin, ethambutol, and
pyrazinamide only for 6 months. However, these two latter
recommendations lack clinical trial evidence and are based on
expert opinion. When additional drug resistance is detected or
highly likely, individualized regimens are needed.

At the time of the WHO guidelines, there was no clear evidence
if using high-dose isoniazid within such regimens was beneficial.
This is likely to be influenced by the resistance mutation(s) present
(e.g. mutations in inhA and its promoter are usually associated with
lower-level resistance than katG mutations) and the patient's ace-
tylator status [21]. There is recognition that isoniazid may be
included in regimens simply due to the use of fixed-dose combi-
nation pills. Because the majority of the evidence for the treatment
of isoniazid-resistant TB derives from secondary observational data,
bespoke clinical trials (potentially drawing from emulated target
trials) would be needed to strengthen the evidence base [22].
Treatment of MDR/RR-TB

In 2018, the results of an individual patient data analysis with
more than 12 000 patients with MDR/RR-TB, and an observational
cohort about the impact of bedaquiline on TB mortality in South
Africa, led to substantial changes in the recommendations for
management of patients with MDR/RR-TB [23,24]. The recom-
mendation to change from 18 to 20 months of treatment to an all-
oral, shorter, 9e12 month regimen, as well as the recommendation
against the use of injectables (namely capreomycin and kana-
mycin), marked a drastic shift in the management of patients with
MDR/RR-TB [25,26]. STREAM Stage 2 trial was a phase III trial that
compared a 9-month injectable-containing regimen (4 months of
kanamycin, isoniazid, prothionamide, and 9 months of moxi-
floxacin, clofazimine, ethambutol, and pyrazinamide) with a 9-
month all-oral regimen where bedaquiline replaced kanamycin.
The primary endpoint, favourable treatment outcome, was reached
with the injectable-containing regimen in 71% of participants and
with the all-oral regimen in 83% [27]. Most importantly, grade 3/4
hearing loss was documented in only 2% of participants receiving
the all-oral regimen vs. 9% in the injectable-containing regimen.
The WHO recommended the 9- to 12-month regimen with beda-
quiline (and the option of replacing ethionamide with linezolid
given for 2 months) in 2022 for the treatment of MDR/RR-TB
without fluoroquinolone resistance as second option [28]. The TB-
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PRACTECAL trial consolidated the evidence that MDR/RR-TB can be
treated successfully with a 6-month regimen [29]. A regimen with
bedaquiline, linezolid, pretomanid, and moxifloxacin (BPaLM) was
documented in the modified intention to treat analysis to be su-
perior to the standard of care (89% favourable outcomes in BPaLM
group vs. 51% in standard of care). At least as important as the ef-
ficacy of the regimen were the safety results: only 25% patients on
BPaLM, comparedwith 60% on standard of care suffered a grade 3/4
adverse event within 108 weeks after randomization [30]. The trial
was stopped early because of the superiority of the BPaLM regimen
and the WHO recommended it (very low certainty of evidence) as
the preferred treatment option for fluoroquinolone-susceptible
MDR/RR-TB in 2022 guidelines, even if the trial included also par-
ticipants with fluoroquinolone-resistant TB [28]. The NExT trial
supported the potential of bedaquiline, linezolid (600 mg daily),
and fluoroquinolones to shortenMDR/RR-TB treatment to 6months
[31]. An interim analysis of the BEAT Tuberculosis trial with beda-
quiline, linezolid, and delamanid for 6 months showed also high
efficacy with 87% obtaining a favourable outcome [32]. The MDR-
END trial, using a non-bedaquiline-based regimen with delam-
anid, linezolid, levofloxacin, and pyrazinamide for 9e12 months,
showed 75% success and the regimen was non-inferior to a
Table 2
Recently completed and ongoing, unpublished trials on rifampicin-resistant tuberculosis

Trial Phase Control arm Country Experimental
treatment regim

Recently completed trials
OptiQ II No Peru, South Africa Lfx 11, 14, 17 o

kg plus backgro
regimen

SimpliciTB II Yes
(only for
DS-TB)

8 countries Bdq, Pa, Z, Mfx

SUDOCU II No South Africa, Tanzania Sutezolid, Bdq,
Mfx

TREAT-TB (India) III No India Bdq, Dlm, Lzd a

Ongoing trials
ACTG A5356 II No Multicountry Bdq, Cfz, Dlm, a

(different posol
DECODE II No South Africa, Tanzania Delpazolid, Bdq

Mfx
DRAMATIC II No Multicountry Lfx, Bdq, Lzd, D

Cfz
BEAT tuberculosis III Yes South Africa Bdq, Dlm, and L

Lfx or Cfz

endTB [35] III Yes Multicountry Bdq, Mfx, Lzd, a
Bdq, Cfz, Lfx, Lz
or Bdq, Dlm, Lf
and Z; or Dlm,
Lzd, and Z; or D
Mfx, and Z

TB-TRUST III Yes China Lfx, Lzd, Cs, and
Cfz if resistant

TB-TRUST Plus III No China Bdq, Z, Lzd, Cs,

InDEX IV Yes South Africa Individualized
regimens

PROSPECT IV No China Cfz, Cs, Lfx, Lzd
Pto; or Bdq, Cfz
and Lzd

GRACE-TB NA Yes China Individualized
regimens

SMARTT NA Yes South Africa WGS-guided re

Bdq, bedaquiline; Cfz, clofazimine; Cs, cycloserine; Dlm, delamanid; DS-TB, drug-suscep
levofloxacin; Lzd, linezolid; MDR-TB, multidrug-resistant tuberculosis; Mfx, moxifloxaci
pretomanid; Pto, prothionamide; TIW, three times weekly; WGS, whole genome sequen
20e24 month regimen based on WHO 2014 MDR-TB guidelines
[33,34]. Table 2 shows completed and ongoing trials not yet pub-
lished concerning treatment of MDR/RR-TB.

Unfortunately, despite all progress with new regimens, the
scarcity of drug resistance testing against bedaquiline, linezolid,
pretomanid, delamanid, and other key drugs is a substantial threat
to all the progress made in the treatment of MDR/RR-TB [36]. The
lack of user-friendly, standardized phenotypic drug-susceptibility
testing limits not only the scale-up of diagnostics but also un-
dermines the trust of treating physicians in their implementation in
clinical practice. It is crucial to implement widespread routine
surveillance systems for drug resistance [37]. Moreover, drugs
included in these regimens are not accessible everywhere and their
availability is jeopardized by unacceptably high costs in many
countries [38].

Treatment of MDR/RR and fluoroquinolone-resistant TB

Challenges that clinicians face when managing patients with
pre-extensively drug-resistant (pre-extensively drug-resistant
[XDR]) TB, defined as RR/MDR-TB with additional fluoroquinolone
resistance, include limited efficacy with current regimens, a high
treatment (excluding fluoroquinolone-resistant tuberculosis) (as of 6 July 2023)

en(s)
Treatment
duration (mo)

Notes Clinicaltrials.gov
identifier

r 20 mg/
und

6 750e1000 mg Lfx every
day achieved target
AUC/MIC

NCT01918397

4 Not non-inferior to
HRZE; no comparator
for MDR-TB arm

NCT03338621

Dlm, 3 Regimen well tolerated NCT03959566

nd Cfz 6e9 91% favourable
outcomes

CTRI/2019/01/017310

nd Lzd
ogies)

6 TIW dosing of Lzd NCT05007821

, Dlm, 3 Dose-ranging and
tolerability

NCT04550832

lm, and 4e9 Duration-randomized
clinical trial

NCT03828201

zd, plus 6 Experimental regimen
adapted according to
rapid molecular testing

NCT04062201

nd Z; or
d, and Z;
x, Lzd,
Cfz, Lfx,
lm, Cfz,

9 Trial implementing
Bayesian adaptive
randomization

NCT02754765

Z (or
to Z)

6e9 No follow-up available NCT03867136

Cfz 6e9 Regimen guided by Z
susceptibility testing

NCT04717908

NS WGS-derived
individualized regimen

NCT03237182

, and
, Cs, Lfx,

6 (first regimen),
9 (second regimen)

No follow-up available NCT05306223

NS Individualized regimen
guided by rapid
molecular tests

NCT03604848

gimen NS Individualized regimen
guided by rapid
molecular tests

NCT05017324

tible tuberculosis; HRZE, isoniazid þ rifampicin þ pyrazinamide þ ethambutol; Lfx,
n; MIC, minimal inhibitory concentration; NS, not specified; NA, not applicable; Pa,
cing; Z, pyrazinamide.
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adverse event profile, unaffordable costs for most settings, and the
potential to amplify drug resistance given the limited availability of
registered novel drugs [39]. The only ongoing trial is reported in
Table 3. The BEAT-India trial specifically recruited persons with pre-
XDR-TB and used a 6- to 9-month four-drug regimen (bedaquiline,
linezolid at 600 mg daily, clofazimine, and delamanid), 139 (91%) of
153 participants had a favourable outcome, though linezolid-
associated toxicity was considerable [40]. Over half of the partici-
pants developed myelosuppression (85, 52%) or neurotoxicity (69,
42%) of any grade, although 34 patients were able to take a lower
(300 mg) dose of linezolid. NiX-TB and ZeNix trials used a three-
drug 6 months BPaL regimen in pre-XDR-TB or MDR-TB with pre-
vious failure (linezolid was dosed 1200 mg daily for 6 months in
NiX-TB and 600 mg or 1200 mg daily for 2 or 6 months in ZeNix).
Neither study had a control arm and the number of participants
included was relatively small. NiX-TB showed approximately 90%
favourable outcome rate in 109 participants, with 81% experiencing
peripheral neuropathy and 48% myelosuppression. ZeNix
confirmed the efficacy results (favourable outcomes ranged be-
tween 84% and 93% across different linezolid dose groups) and the
risk-benefit ratio seemed in favour of the group that received
linezolid at 600 mg daily for 6 months. Nine participants had
baseline phenotypic bedaquiline resistance, of whom six had a
favourable outcome [41,42]. The BPaL regimen can be prescribed in
case of proven fluoroquinolone resistance, according to WHO rec-
ommendations (very low certainty of evidence) [43]. The optimal
linezolid dosing posology remains to be established, as current
WHO recommended dosing (600 mg daily throughout the treat-
ment) is based on very low certainty of evidence; ongoing efforts
may inform policies on reduced/intermittent linezolid adminis-
tration [35,44]. In patients with more extensive disease and with
unfavourable linezolid pharmacokinetics (sub-optimal linezolid
levels relative to MIC) [45], there are concerns about the amplifi-
cation of resistance, even if evidence is still lacking. Moreover,
monitoring linezolid side effects outside clinical trial settings in
high-endemic, low-resource areas may be challenging.

In summary, the available findings seem to indicate that a 6- to
9-month, 3- to 4-drug regimen to treat fluoroquinolone-resistant
MDR/rifampicin-resistant disease is feasible. Although there is no
solid evidence base, where appropriate (multiple poor prognostic
features), it would be reasonable for clinicians to opt for a four-drug
regimen (i.e. bedaquiline-linezolid-delamanid-clofazimine as in
the BEAT-India regimen) or to extend the duration of the regimen in
case of culture positivity at the 4-month time point when using a 6-
month regimen. Overall, it is imperative that capacity for drug-
susceptibility testing of group A drugs (fluoroquinolones, beda-
quiline, and linezolid), and pretomanid, is urgently developed and
rolled out. Concerningly, emerging bedaquiline resistance acquisi-
tion has been reported in programmatic setting in South Africa,
Moldova, and other countries [46e49].

Host-directed therapy

Host-directed therapy (HDT) for TB may either boost host
defence (‘antimicrobial’) or control an exuberant inflammatory
Table 3
Recently completed and ongoing, unpublished trials on rifampicin-resistant, fluoroquino

Name of trial Regimen Duration of
trial regimen

Site

endTB-Q [44]
(NCT03896685)

Bdq-Lzd-Dlm-Cfz 24e39 wk India, Kazakhstan, Lesotho,
Pakistan, Peru, and Vietnam

Bdq, bedaquiline; Cfz, clofazimine; Dlm, delamanid; FQ, fluoroquinolone; Lzd, linezolid;
phenotype (‘anti-inflammatory’). Determining the correct timing of
HDT is a challenge. It is equally complicated to identify underlying
TB endotypes, defined as distinct immune, epigenetic, metabolic,
molecular, and transcriptional profiles [50,51]. In addition, recog-
nized immune risk factors include Mendelian susceptibility to
mycobacteria, untreated HIV-1 infection, or TNF (tumor necrosis
factor) inhibitors use. In HIV-1 infection, provision of antiretroviral
therapy reduces individual risk for developing TB by 60% to 80% and
reduces mortality, and is thus the most effective HDT widely in use.
Conversely, excessive dysregulated immune responses may
contribute to tissue damage and even death, such as in tuberculous
meningitis, or HIV-TB-immune reconstitution inflammatory
syndrome.

Although there has been considerable activity recently on pre-
clinical evaluation of HDT, clinical trial evidence is lacking.
Interferon-gamma modestly increased bacterial clearance and
resolution of fever in patients with cavitary TB in a single
randomized-controlled trial [52], and TNF- and interleukin-1 an-
tagonists have shown to be effective in steroid-refractory para-
doxical reactions [53,54]. Vitamin D3 potentially has both
antimicrobial and anti-inflammatory actions through promotion of
autophagy and the induction of antimicrobial cathelicidin [55];
however, clinical trial evidence of the benefit of systematic addition
of vitamin D3 has been modest or non-existent. Metformin therapy
of diabetes mellitus associates epidemiologically with benefit, but
did not lead to earlier sputum conversion in a recent trial [56]. A
type 4 phosphodiesterase inhibitor and everolimus, an mTOR
(mechanistic target of rapamycin) inhibitor, both modestly
enhanced recovery of lung function at end of therapy in a recent
trial in South Africa [57]. The clearest evidence of anti-
inflammatory benefit exists for corticosteroids, which are associ-
ated with 30% lower mortality of HIV-1 uninfected TB meningitis
[58], and reduce constriction and hospitalization in TB pericarditis
[59], and both prevent and improve outcome of TB-immune
reconstitution inflammatory syndrome [60,61]. However, this
benefit may vary according to different patient genotypes (i.e.
leukotriene A(4) hydrolase) and pro-inflammatory cytokine con-
centrations (i.e. in cerebrospinal fluid of TB meningitis patients)
[62,63].

Pharmacokinetics and pharmacogenomics

Advances in pharmacokinetics have accelerated the pace of TB
drug development. In a salient example, pharmacometric analyses
of two clinical trials optimized rifapentine dosing from an initial
posology of 10 mg/kg daily to a fixed 1200 mg daily dose of rifa-
pentine as part of the newly approved 4-month regimen [11,12,64].
Although pharmacokinetic studies have demonstrated that rifam-
picin exposure increases at least dose-proportionally [65,66] and
that higher rifampicin doses exhibit dose- and exposure-response
relationships [67,68], clinical trials have yet to confirm whether
treatment shortening is possible with high-dose rifampicin
(Table 1) [16]. The pharmacokinetic analysis of SHINE and results
from a separate cohort study indicated substantially reduced drug
exposures in children in lower weight bands and in those who
lone-resistant tuberculosis treatment (as of 6 July 2023)

Inclusion criteria Status Participants enrolled

Pre-XDR TB (FQ-resistant TB) in �15-y-old
with pulmonary tuberculosis according to a
validated rapid molecular test

Ongoing Enrolment completed
in March 2023

Pre-XDR TB, pre-extensively drug-resistant tuberculosis.



Table 4
Research priorities

New drugs and regimens
� Shorter, well-tolerated, and safer regimens for drug-susceptible and drug-resistant tuberculosis
� Sustained early development pipeline of new anti-TB compounds, including long-acting injectable drugs
Tailored treatment approach
� Treatment strategies based on more individualized treatment, including the identification of criteria to define TB severity
� Surrogate biomarker of relapse-free cure
Host-directed therapies
� Improved understanding of TB endotypes
� Host-directed therapies to accelerate bacterial clearance or reduce post-TB morbidity
Implementation research
� Identify barriers to access to new drugs (including special populations, for instance, children)
� Optimise rollout of drug-susceptibility testing for new drugs (including rapid molecular tests and evidence on relationship between phenotypic-genotypic resistance

profiles)

TB, tuberculosis.
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transition onto adult doses (�25 kg), underlining the need for doses
to account for the higher mg/kg requirement of smaller individuals
[69,70]. Despite significant gains in treatment shortening for adults,
adolescents, and children with DS-TB, pharmacokinetic studies
suggest that treatment approaches tailored to patient characteris-
tics may be achievable.

Pharmacogenetic evaluations have not yet gained guideline
endorsements in the treatment for TB. The best-described phar-
macogenetic signal to date, for isoniazid acetylator status, has been
considereddbut not recommendeddby the WHO to inform the
use of high-dose isoniazid for the treatment of DR-TB for rapid
acetylators [71,72]. The recent development of a cartridge-based
multiplex quantitative PCR assay on the GeneXpert platform that
differentiates NAT2 (N-Acetyl Transferase 2) acetylator genotype
signals raises hope that the personalization of treatment, based on
host genetic polymorphisms, may be within grasp [73].
Future research priorities

There remains a pressing need to find well-tolerated, safe, short
regimens for both DS and DR-TB [11,29], including in particular a
better-tolerated alternative for linezolid. Cure of most non-severely
affected patients with a 2-month duration of treatment may be
achievable. Long-acting injectable drugs also have transformative
potential, for both prevention and treatment of TB. In parallel with
the quest for new regimens, it is important to evaluate strategic,
more individualized, treatment approaches, or individual risk-based
strategies such as those tested in the TRUNCATE-TB trial [17]. Effi-
cient testing of multiple new regimens requires identification of a
biomarker that is a reliable surrogate for relapse-free cure [74]. This
would accelerate the identification and advancement of promising
regimens to testing in definitive trials, as well as guide physicians
decisions to individualize treatments [75]. Testing adjunctive host-
directed therapies, with the goals of enhancing bacterial clearance
and minimizing post-TB lung damage, is an important but neglected
research direction. Understanding TB endotypes may enable a
stratified approach to use such host-directed agents [50,51].

Implementation research remains critically important to eval-
uate and optimize outcomes in programmatic settings. There is a
need to improve treatment outcome definitions based on long-
term outcome benchmarks [76]. Research on the optimal ap-
proaches to roll out molecular diagnostic drug-susceptibility tests
accompanying the availability of new regimens is important to
ensure that affected patients receive appropriate therapy [36].
Barriers accessing new drugs (including rifapentine) and regimens
are significant [77,78], and there is a need for research into how
these can be overcome to ensure rapid translation of new findings
into practice. This particularly applies to special populations, such
as children of all ages and pregnant women: inclusion of these
groups in future clinical trials should be prioritized. Table 4 sum-
marizes research priorities.

Conclusions

The last 2 decades have seen major changes in the management
of TB. The availability of new compounds, coupled with renewed
interest in TB regimen development, has led to impressive
achievements which will have to be sustained in the coming years.
Although the focus in recent years has been in treatment short-
ening with new drug combinations, future aims may include
improving current regimens by increasing the quality of supporting
evidence (including operational and programmatic data), reducing
toxicity, and optimizing efficacy, for instance by enhancing phar-
macokinetic properties, identifying optimal HDT, and further
individualizing regimens. In parallel, future efforts should be
directed to protect these recent advances by preventing and iden-
tifying the selection of drug resistance and providing widespread,
affordable, patient-centred access to new treatment options for all
people affected by TB.
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